### Act 1: Binary Session Types With a deeply embedded binder representation.

Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

Bound variables are represented by their De Bruijn index (i.e: a natural number).

Terms  $M, N ::= \stackrel{\checkmark}{n} | x | \lambda . M | M N$ Types  $S, T ::= base | S \to T$ 

Bound variables are represented by their De Bruijn index (i.e: a natural number).

Free variables are represented by a name (i.e: an element of a nominal set).

Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

Bound variables are represented by their De Bruijn index (i.e: a natural number). Free variables are represented by a name (i.e: an element of a nominal set). Binders are anonymous (as with De Bruijn indices in general).

Terms  $M, N \coloneqq n \mid x \mid \lambda M \mid M N$ Types  $S, T := base \mid S \to T$ 

Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

$$M^x \equiv \{0 o x\}M$$
 Open a term.  
 $\ M^x M \equiv \{0 \leftarrow x\}M$  Close a term.  
 $lc(M)$  A locally closed term.

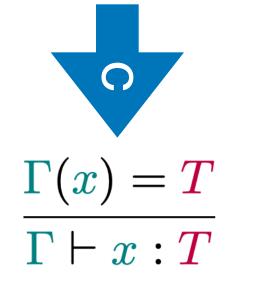
Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

$$M^x \equiv \{0 o x\}M$$
 Open a term.  
 $\ M^x \equiv \{0 \leftarrow x\}M$  Close a term.  
 $lc(M)$  A locally closed term.

 $\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \qquad \begin{array}{c} \forall x \notin L & \Gamma, x : S \vdash M^x : T \\ \hline \Gamma \vdash \lambda : M : S \to T \end{array}$ 

Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

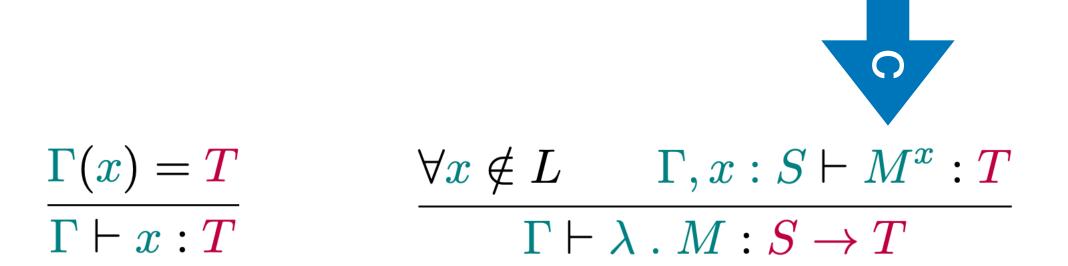
$$M^x \equiv \{0 o x\}M$$
 Open a term.  
 $\ M^x \equiv \{0 \leftarrow x\}M$  Close a term.  
 $lc(M)$  A locally closed term.



### $\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \qquad \begin{array}{c} \forall x \notin L & \Gamma, x : S \vdash M^{x} : T \\ \hline \Gamma \vdash \lambda \cdot M : S \to T \end{array}$

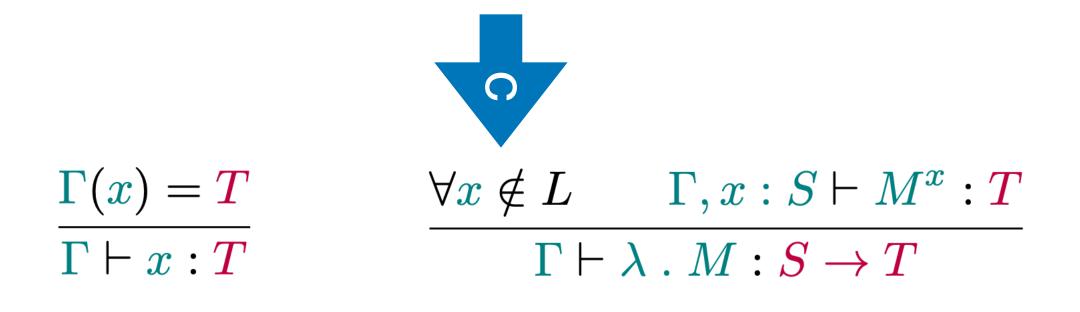
Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

$$M^x \equiv \{0 o x\}M$$
 Open a term.  
 $\ M^x \equiv \{0 \leftarrow x\}M$  Close a term.  
 $lc(M)$  A locally closed term.



Terms  $M, N ::= n \mid x \mid \lambda . M \mid M N$ Types  $S, T ::= base \mid S \to T$ 

$$M^x \equiv \{0 o x\}M$$
 Open a term.  
 $\ M^x \equiv \{0 \leftarrow x\}M$  Close a term.  
 $lc(M)$  A locally closed term.



### **smoleMTST** A simple calculus with binary session types.

Expressions  $e := \mathsf{tt} | \mathsf{ff} | () | x$ Sorts  $S ::= bool \mid unit$ Processes  $P, Q := k![e] \cdot P \mid k?() \cdot P \mid P \mid Q$ | if e else P else Q $|\nu.P|!P|$ inact Types  $T := ?[S].T \mid ![S].T \mid end \mid \bot$ 

### **smolEMTST** A simple calculus with binary session types.

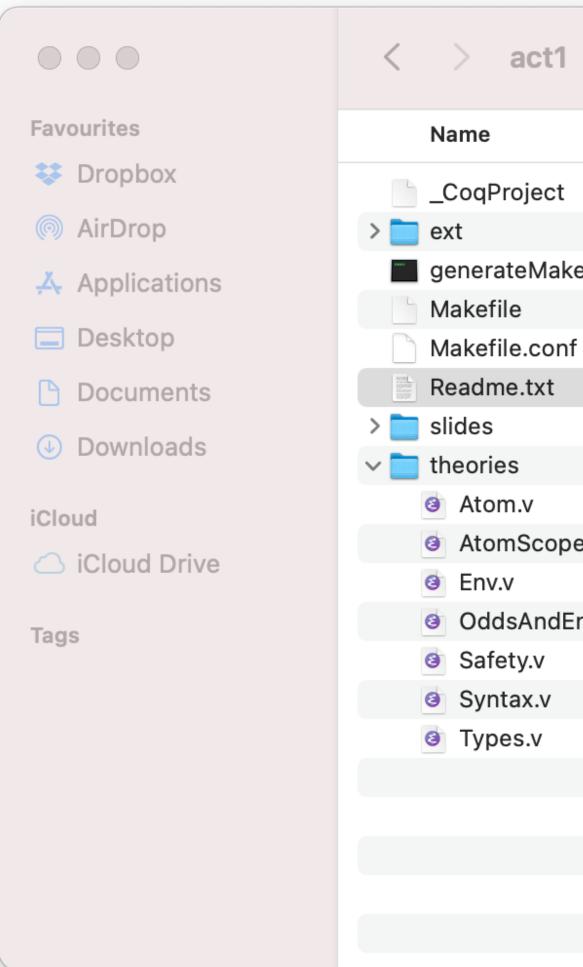
Expressions  $e := \mathsf{tt} | \mathsf{ff} | () | x$ Sorts  $S ::= bool \mid unit$ Processes  $P, Q := k![e] \cdot P \mid k?() \cdot P \mid P \mid Q$ | if e else P else Q $|\nu.P|!P|$  inact Types  $T := ?[S].T \mid ![S].T \mid end \mid \bot$ 

### **smolEMTST** A simple calculus with binary session types.

- Expressions  $e := \mathsf{tt} | \mathsf{ff} | () | x$ Sorts  $S ::= bool \mid unit$ Processes  $P, Q := k![e] \cdot P \mid k?() \cdot P \mid P \mid Q$ | if e else P else Q $|\nu.P|!P|$  inact
- - Types  $T ::= ?[S].T \mid ![S].T \mid end \mid \bot$

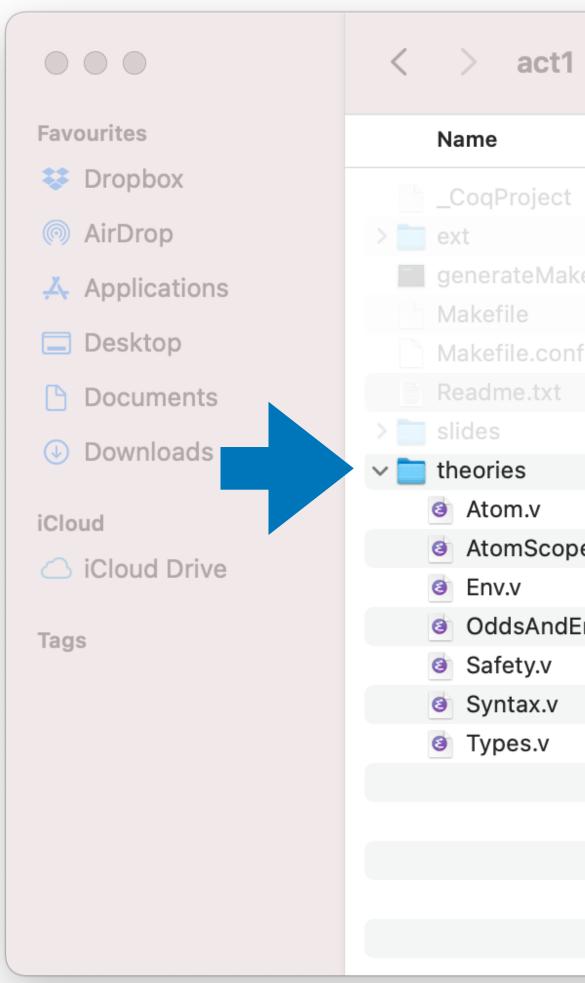
### **SMOIEMTST** A simple calculus with binary session types.

Expressionse ::= tt | ff | () | xexpression variablesSortsS ::= bool | unitProcesses  $P, Q ::= k![e] \cdot P \mid k?() \cdot P \mid P \mid Q$  $\begin{array}{c|c} & | \text{ if } e \text{ else } P \text{ else } Q \\ \hline & \nu . P \mid ! P \mid \text{ inact} \\ & \text{Types} \quad T \coloneqq ?[S].T \mid ![S].T \mid \text{ end} \mid \bot \end{array}$ 



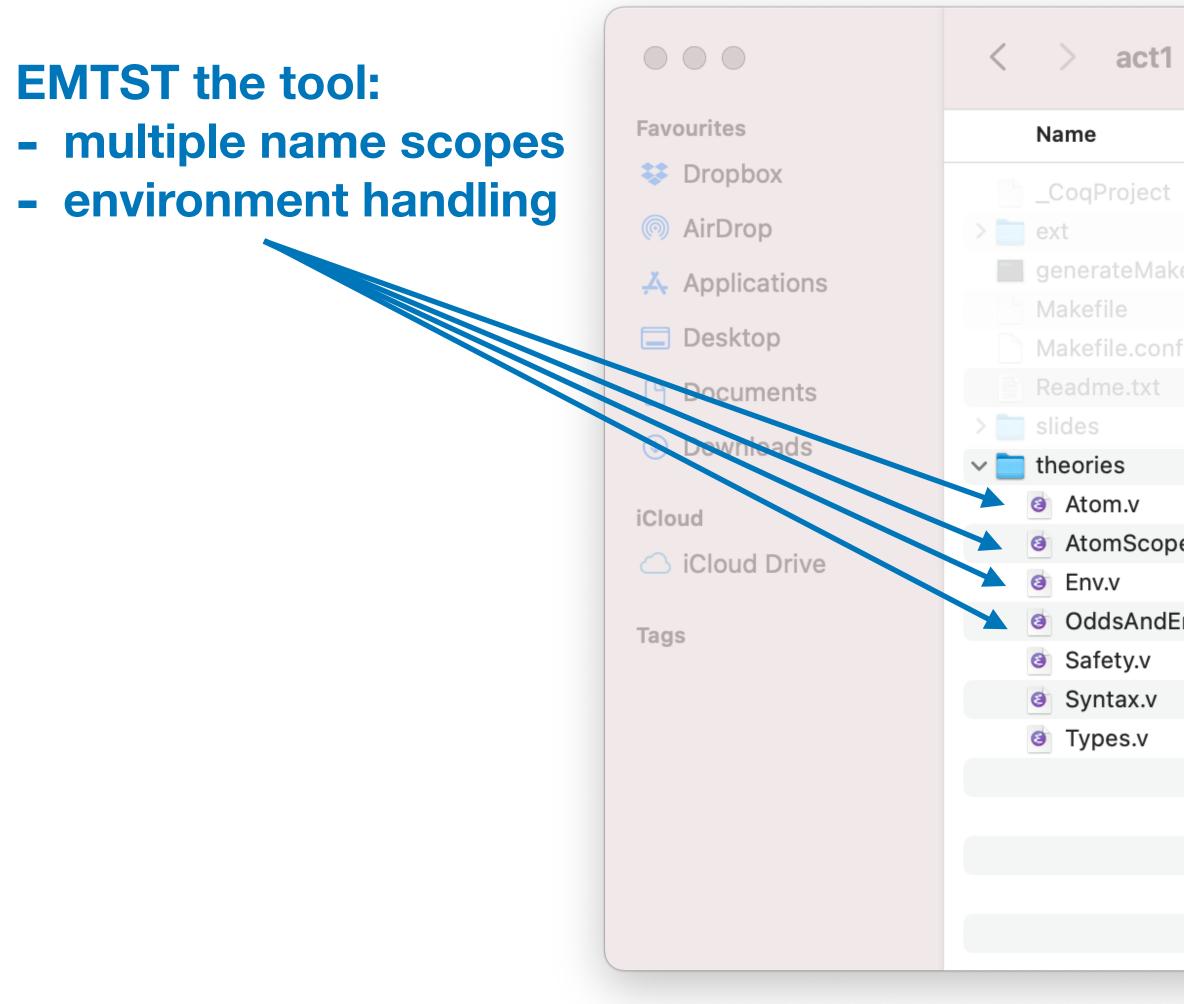


|        | ∷≣≎ |     |       |      | ~          | $\gg$  | Q   |
|--------|-----|-----|-------|------|------------|--------|-----|
|        |     | ^ S | ize   |      | Kind       |        |     |
|        |     |     | 200 b | ytes | Document   |        |     |
|        |     |     |       |      | Folder     |        |     |
| kefile |     |     | 123 b | ytes | Unix Exa   | ble F  | ile |
|        |     |     | 29    | 9 KB | Document   | :      |     |
| f      |     |     | З     | 3 KB | Configura  | tion f | ile |
|        |     |     | 340 b | ytes | Plain Text |        |     |
|        |     |     |       |      | Folder     |        |     |
|        |     |     |       |      | Folder     |        |     |
|        |     |     | З     | 3 KB | Emacs Do   | cume   | ent |
| bes.v  |     |     | 5     | 5 KB | Emacs Do   | cume   | ent |
|        |     |     | 45    | 5 KB | Emacs Do   | cume   | ent |
| Ends.v |     |     | 1     | KB   | Emacs Do   | cume   | ent |
|        |     |     | 4     | I KB | Emacs Do   | cume   | ent |
|        |     |     | 8     | 3 KB | Emacs Do   | cume   | ent |
|        |     |     | 16    | 6 KB | Emacs Do   | cume   | ent |
|        |     |     |       |      |            |        |     |



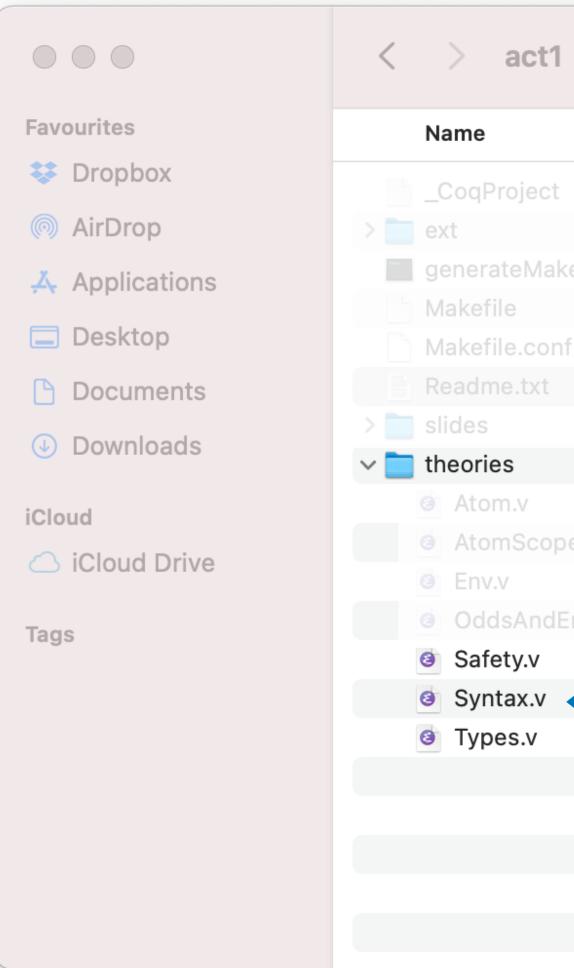


|        | ∷≡≎ |      | ·     | ~ » Q          |
|--------|-----|------|-------|----------------|
|        | ~   | Size |       | Kind           |
|        |     |      |       |                |
|        |     |      |       |                |
| cefile |     |      |       |                |
|        |     |      |       |                |
| f      |     |      |       |                |
|        |     |      |       |                |
|        |     |      |       |                |
|        |     |      |       | Folder         |
|        |     |      | 3 KB  | Emacs Document |
| bes.v  |     |      | 5 KB  | Emacs Document |
|        |     |      | 45 KB | Emacs Document |
| Ends.v |     |      | 1 KB  | Emacs Document |
|        |     |      | 4 KB  | Emacs Document |
|        |     |      | 8 KB  | Emacs Document |
|        |     |      | 16 KB | Emacs Document |
|        |     |      |       |                |



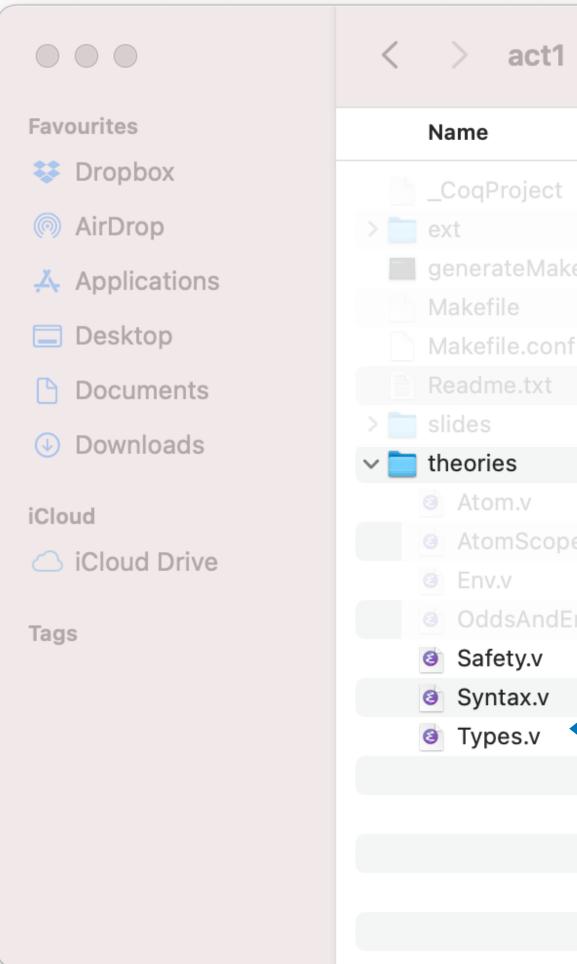


|        | ∷≡≎ |      | ·     | ~ » Q          |
|--------|-----|------|-------|----------------|
|        | ~   | Size |       | Kind           |
|        |     |      |       |                |
|        |     |      |       |                |
| cefile |     |      |       |                |
|        |     |      |       |                |
| f      |     |      |       |                |
|        |     |      |       |                |
|        |     |      |       |                |
|        |     |      |       | Folder         |
|        |     |      | 3 KB  | Emacs Document |
| bes.v  |     |      | 5 KB  | Emacs Document |
|        |     |      | 45 KB | Emacs Document |
| Ends.v |     |      | 1 KB  | Emacs Document |
|        |     |      | 4 KB  | Emacs Document |
|        |     |      | 8 KB  | Emacs Document |
|        |     |      | 16 KB | Emacs Document |
|        |     |      |       |                |



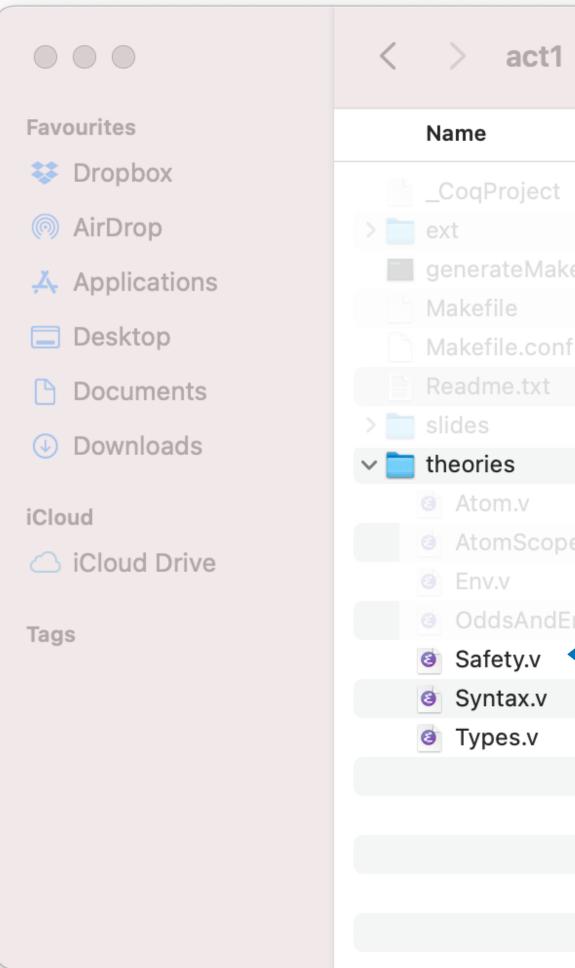


|        | $\equiv \diamond$ |        |    |    | ∽ »Q           |
|--------|-------------------|--------|----|----|----------------|
|        |                   | ^ Size |    |    | Kind           |
|        |                   |        |    |    |                |
|        |                   |        |    |    |                |
| cefile |                   |        |    |    |                |
|        |                   |        |    |    |                |
| f      |                   |        |    |    |                |
|        |                   |        |    |    |                |
|        |                   |        |    |    |                |
|        |                   |        |    |    | Folder         |
|        |                   |        |    |    |                |
| es.v   |                   |        |    |    |                |
|        |                   |        |    |    |                |
| Ends.v |                   |        |    |    |                |
|        |                   |        | 4  | KB | Emacs Document |
|        |                   |        | 8  | KB | Emacs Document |
|        |                   |        | 16 | KB | Emacs Document |
|        |                   |        |    |    |                |





|        | ∷≡≎ |        |    |    | ~ >>        | Q    |
|--------|-----|--------|----|----|-------------|------|
|        |     | ^ Size |    |    | Kind        |      |
|        |     |        |    |    |             |      |
|        |     |        |    |    |             |      |
| cefile |     |        |    |    |             |      |
|        |     |        |    |    |             |      |
| f      |     |        |    |    |             |      |
|        |     |        |    |    |             |      |
|        |     |        |    |    |             |      |
|        |     |        |    |    | Folder      |      |
|        |     |        |    |    |             |      |
| es.v   |     |        |    |    |             |      |
|        |     |        |    |    |             |      |
| Ends.v |     |        |    |    |             |      |
|        |     |        | 4  | KB | Emacs Docur | nent |
|        |     |        | 8  | KB | Emacs Docur | nent |
|        |     |        | 16 | KB | Emacs Docur | nent |
|        |     |        |    |    |             |      |





|        | $\equiv \diamond$ |      | •••• | ∽ »Q           |
|--------|-------------------|------|------|----------------|
|        | ^                 | Size |      | Kind           |
|        |                   |      |      |                |
|        |                   |      |      |                |
| cefile |                   |      |      |                |
|        |                   |      |      |                |
| f      |                   |      |      |                |
|        |                   |      |      |                |
|        |                   |      |      |                |
|        |                   |      |      | Folder         |
|        |                   |      |      |                |
| es.v   |                   |      |      |                |
|        |                   |      |      |                |
| Ends   |                   |      |      |                |
|        |                   | 4    | KB   | Emacs Document |
|        |                   | 8    | KB   | Emacs Document |
|        |                   | 16   | KB   | Emacs Document |
|        |                   |      |      |                |

Expressions  $e := \mathsf{tt} | \mathsf{ff} | () | x$ 

Inductive exp : Set := tt ff

one V of evar

```
(* Open a bound variable in an expression (original ope) *)
Definition open_exp (n : nat) (e' : exp) (e : exp) : exp :=
 match e with
   V v \Rightarrow EV.open_var V n e' v
      ⇒ e
   _
  end.
```

```
Inductive lc_exp : exp \rightarrow Prop :=
   lc_tt : lc_exp tt
   lc_ff : lc_exp ff
   lc_one : lc_exp one
   lc_var a: lc_exp (V(EV.Free a))
```

Expressions e ::= tt | ff | () | x

Inductive exp : Set := tt

> ff one V of evar

```
(* Open a bound variable in an expression (original ope) *)
Definition open_exp (n : nat) (e' : exp) (e : exp) : exp :=
 match e with
   V v \Rightarrow EV.open_var V n e' v
     \Rightarrow e
   _
  end.
```

```
Inductive lc_exp : exp \rightarrow Prop :=
   lc_tt : lc_exp tt
   lc_ff : lc_exp ff
   lc_one : lc_exp one
   lc_var a: lc_exp (V(EV.Free a))
```

Expressions  $e := \mathsf{tt} | \mathsf{ff} | () | x$ 

Inductive exp : Set :=



```
(* Open a bound variable in an expression (original ope) *)
Definition open_exp (n : nat) (e' : exp) (e : exp) : exp :=
 match e with
    V v \Rightarrow EV.open_var V n e' v
      \Rightarrow e
   _
  end.
```

```
Inductive lc_exp : exp \rightarrow Prop :=
   lc_tt : lc_exp tt
   lc_ff : lc_exp ff
   lc_one : lc_exp one
   lc_var a: lc_exp (V(EV.Free a))
```

Expressions e := tt | ff | () | x

Inductive exp : Set := tt

ff one V of evar

```
(* Open a bound variable in an expression (original ope) *)
Definition open_exp (n : nat) (e' : exp) (e : exp) : exp :=
 match e with

| V v \Rightarrow EV.open_var V n e' v

| _ \Rightarrow e
  end.
```

```
Inductive lc_exp : exp \rightarrow Prop :=
   lc_tt : lc_exp tt
   lc_ff : lc_exp ff
   lc_one : lc_exp one
   lc_var a: lc_exp (V(EV.Free a))
```

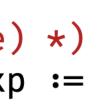
Expressions e ::= tt | ff | () | x

Inductive exp : Set := tt ff

one V of evar

```
(* Open a bound variable in an expression (original ope) *)
Definition open_exp (n : nat) (e' : exp) (e : exp) : exp :=
 match e with
    V v \Rightarrow EV.open_var V n e' v
      \Rightarrow e
   _
  end.
```

```
Inductive lc_exp : exp \rightarrow Prop :=
    lc_tt : lc_exp tt
    lc_ff : lc_exp ff
   lc_one : lc_exp one
lc_var a: lc_exp (V(EV.Free a))
```



 $\begin{array}{l} \text{Processes } P,Q \coloneqq k![e].P \mid k?().P \mid P \mid Q \\ & \quad | \text{ if } e \text{ else } P \text{ else } Q \\ & \quad | \nu.P \mid ! P \mid \text{ inact} \end{array}$ 

```
Inductive proc : Set :=

send : CH.var \rightarrow exp \rightarrow proc \rightarrow proc

receive : CH.var \rightarrow proc \rightarrow proc

ife : exp \rightarrow proc \rightarrow proc

par : proc \rightarrow proc \rightarrow proc

inact : proc

nu : proc \rightarrow proc

bang : proc \rightarrow proc
```

 $\begin{array}{l} \text{Processes } P,Q \coloneqq k![e].P \mid k?().P \mid P \mid Q \\ & \quad | \text{ if } e \text{ else } P \text{ else } Q \\ & \quad | \nu.P \mid !P \mid \text{ inact} \end{array}$ 

```
Inductive proc : Set :=

send : CH.var \rightarrow exp \rightarrow proc \rightarrow proc

receive : CH.var \rightarrow proc \rightarrow proc

ife : exp \rightarrow proc \rightarrow proc \rightarrow proc

par : proc \rightarrow proc \rightarrow proc

inact : proc

nu : proc \rightarrow proc

bang : proc \rightarrow proc
```

 $\begin{array}{l} \text{Processes } P,Q \coloneqq k![e].P \mid k?().P \mid P \mid Q \\ & \quad | \text{ if } e \text{ else } P \text{ else } Q \\ & \quad | \nu.P \mid !P \mid \text{ inact} \end{array}$ 

Inductive proc : Set := send : CH.var  $\rightarrow$  exp  $\rightarrow$  proc  $\rightarrow$  proc receive : CH.var  $\rightarrow$  proc  $\rightarrow$  proc ife : exp  $\rightarrow$  proc  $\rightarrow$  proc  $\rightarrow$  proc par : proc  $\rightarrow$  proc  $\rightarrow$  proc inact : proc nu : proc  $\rightarrow$  proc bang : proc  $\rightarrow$  proc

t if e t else P t else Q $|\nu.P|!P|$  inact

```
Inductive proc : Set :=
  receive : CH.var \rightarrow proc \rightarrow proc
  ife : exp \rightarrow proc \rightarrow proc \rightarrow proc
  par : proc \rightarrow proc \rightarrow proc
  inact : proc
  nu : proc \rightarrow proc
  bang : proc \rightarrow proc
```

```
Inductive lc : proc \rightarrow Prop :=
   Processes P, Q := k![e].P \mid k?().P \mid P \mid Q
                                                                          lc_send : forall k e P,
                                                                              CH.lc k \rightarrow
                                                                             lc_exp e \rightarrow
                                                                             lc P \rightarrow
                                                                             lc (send k e P)
                                                                          lc_receive : forall (L : seq EV.atom) k P,
                                                                              CH.lc k \rightarrow
  send : CH.var \rightarrow exp \rightarrow proc \rightarrow proc
                                                                              (forall x, x \notin L \rightarrow lc (open_e0 P (V (EV.Free x))) \rightarrow
                                                                              lc (receive k P)
                                                                          lc_nu : forall (L : seq CH.atom) P,
                                                                              (forall k, k \notin L \rightarrow lc (open_k0 P (CH.Free k))) \rightarrow
                                                                              lc (nu P)
                                                                          lc_bang P: lc P \rightarrow lc (bang P)
Fixpoint open_e (n : nat) (u : exp) (P : proc) : proc :=
                                                                         (* ... *)
  match P with
  Fixpoint open_k (n : nat) (ko : CH.var) (P : proc) : proc :=
     match P with
     I and is a D is and (and n is is) a (anan is n is D)
```



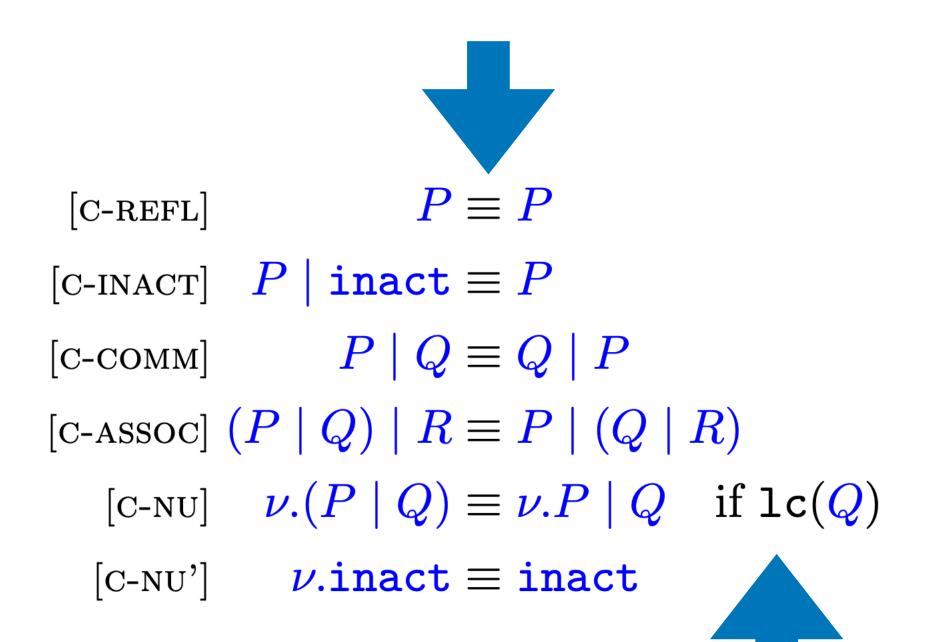
t if e t else P t else Q $|\nu.P|!P|$  inact

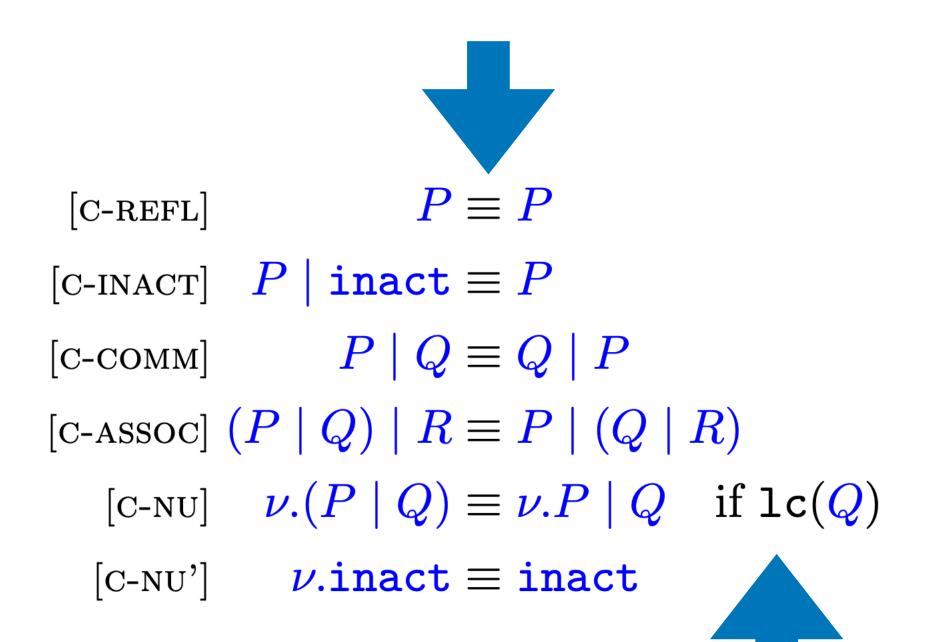
```
Inductive proc : Set :=
  receive : CH.var \rightarrow proc \rightarrow proc
  ife : exp \rightarrow proc \rightarrow proc \rightarrow proc
  par : proc \rightarrow proc \rightarrow proc
  inact : proc
  nu : proc \rightarrow proc
  bang : proc \rightarrow proc
```

```
Inductive lc : proc \rightarrow Prop :=
   Processes P, Q := k![e] \cdot P \mid k?() \cdot P \mid P \mid Q
                                                                           lc_send : forall k e P,
                                                                               CH.lc k \rightarrow
                                                                              lc_exp e \rightarrow
                                                                               lc P \rightarrow
                                                                               lc (send k e P)
                                                                            lc_receive : forall (L : seq EV.atom) k P,
                                                                               CH.lc k \rightarrow
  send : CH.var \rightarrow exp \rightarrow proc \rightarrow proc
                                                                               (forall x, x \notin L \rightarrow lc (open_e0 P (V (EV.Free x))) \rightarrow
                                                                               lc (receive k P)
                                                                            lc_nu : forall (L : seq CH.atom) P,
                                                                               (forall k, k \notin L \rightarrow lc (open_k0 P (CH.Free k))) \rightarrow
                                                                               lc (nu P)
                                                                           lc_bang P: lc P \rightarrow lc (bang P)
Fixpoint open_e (n : nat) (u : exp) (P : proc) : proc :=
                                                                          (* ... *)
  match P with
  Fixpoint open_k (n : nat) (ko : CH.var) (P : proc) : proc :=
     match P with
      I and is a D is and (and n is is) a (anan is n is D)
```



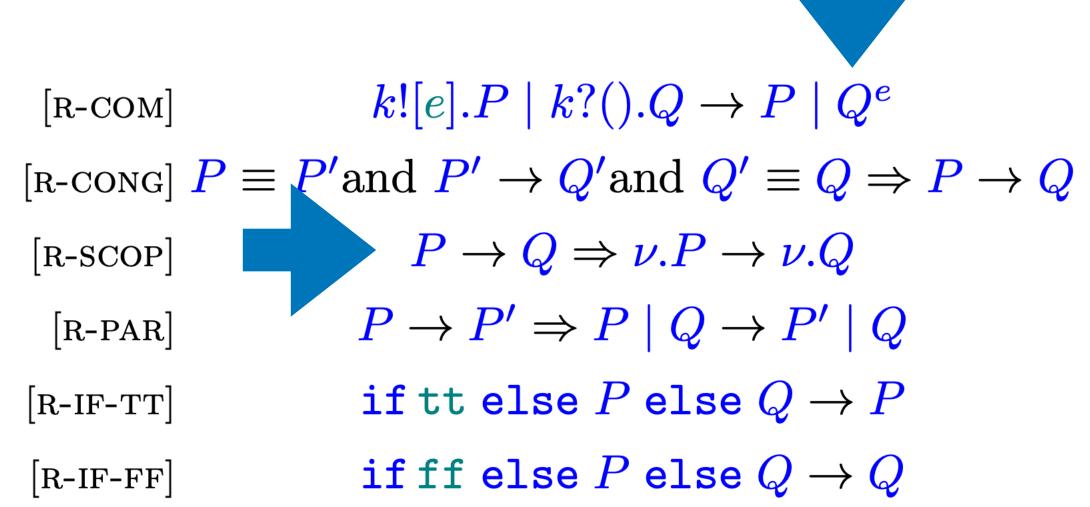
 $\begin{bmatrix} C-REFL \end{bmatrix} \qquad P \equiv P \\ \begin{bmatrix} C-INACT \end{bmatrix} \qquad P \mid \texttt{inact} \equiv P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q \equiv Q \mid P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q ) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-ASSOC \end{bmatrix} (P \mid Q) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-NU \end{bmatrix} \qquad \nu.(P \mid Q) \equiv \nu.P \mid Q \quad \texttt{if lc}(Q) \\ \begin{bmatrix} C-NU' \end{bmatrix} \qquad \nu.\texttt{inact} \equiv \texttt{inact} \\ \end{bmatrix}$ 





 $\begin{array}{ll} [\operatorname{R-COM}] & k![e].P \mid k?().Q \to P \mid Q^e \\ [\operatorname{R-CONG}] P \equiv P' \text{and } P' \to Q' \text{and } Q' \equiv Q \Rightarrow P \to Q \\ [\operatorname{R-SCOP}] & P \to Q \Rightarrow \nu.P \to \nu.Q \\ [\operatorname{R-PAR}] & P \to P' \Rightarrow P \mid Q \to P' \mid Q \\ [\operatorname{R-IF-TT}] & \text{if tt else } P \text{ else } Q \to P \\ [\operatorname{R-IF-FF}] & \text{if ff else } P \text{ else } Q \to Q \end{array}$ 

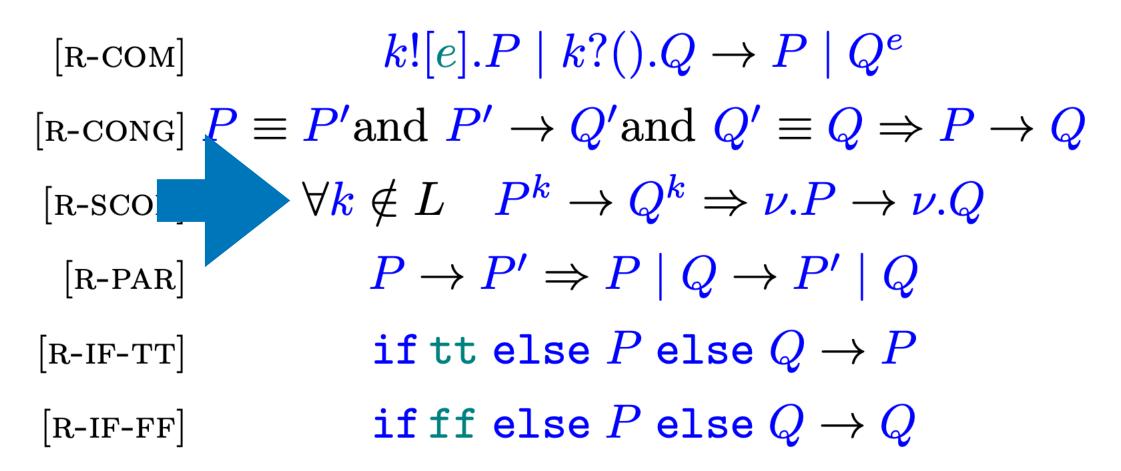
 $\begin{bmatrix} C-REFL \end{bmatrix} \qquad P \equiv P \\ \begin{bmatrix} C-INACT \end{bmatrix} \qquad P \mid \texttt{inact} \equiv P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q \equiv Q \mid P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q ) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-ASSOC \end{bmatrix} (P \mid Q) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-NU \end{bmatrix} \qquad \nu.(P \mid Q) \equiv \nu.P \mid Q \quad \texttt{if lc}(Q) \\ \begin{bmatrix} C-NU' \end{bmatrix} \qquad \nu.\texttt{inact} \equiv \texttt{inact} \\ \end{bmatrix}$ 



 $\begin{bmatrix} C-REFL \end{bmatrix} \qquad P \equiv P \\ \begin{bmatrix} C-INACT \end{bmatrix} \qquad P \mid \texttt{inact} \equiv P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q \equiv Q \mid P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q ) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-ASSOC \end{bmatrix} (P \mid Q) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-NU \end{bmatrix} \qquad \nu.(P \mid Q) \equiv \nu.P \mid Q \quad \texttt{if lc}(Q) \\ \begin{bmatrix} C-NU' \end{bmatrix} \qquad \nu.\texttt{inact} \equiv \texttt{inact} \\ \end{bmatrix}$ 

 $\begin{array}{ll} [\operatorname{R-COM}] & k![e].P \mid k?().Q \rightarrow P \mid Q^e \\ [\operatorname{R-CONG}] P \equiv P' \text{and } P' \rightarrow Q' \text{and } Q' \equiv Q \Rightarrow P \rightarrow Q \\ [\operatorname{R-SCOP}] & \forall k \notin L \quad P^k \rightarrow Q^k \Rightarrow \nu.P \rightarrow \nu.Q \\ [\operatorname{R-PAR}] & P \rightarrow P' \Rightarrow P \mid Q \rightarrow P' \mid Q \\ [\operatorname{R-IF-TT}] & \text{if tt else } P \text{ else } Q \rightarrow P \\ [\operatorname{R-IF-FF}] & \text{if ff else } P \text{ else } Q \rightarrow Q \end{array}$ 

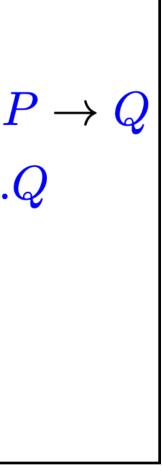
 $\begin{bmatrix} C-REFL \end{bmatrix} \qquad P \equiv P \\ \begin{bmatrix} C-INACT \end{bmatrix} \qquad P \mid \texttt{inact} \equiv P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q \equiv Q \mid P \\ \begin{bmatrix} C-COMM \end{bmatrix} \qquad P \mid Q ) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-ASSOC \end{bmatrix} (P \mid Q) \mid R \equiv P \mid (Q \mid R) \\ \begin{bmatrix} C-NU \end{bmatrix} \qquad \nu.(P \mid Q) \equiv \nu.P \mid Q \quad \texttt{if lc}(Q) \\ \begin{bmatrix} C-NU' \end{bmatrix} \qquad \nu.\texttt{inact} \equiv \texttt{inact} \\ \end{bmatrix}$ 



Reserved Notation "P  $\rightarrow$  Q" (at level 70). **Inductive red** : proc  $\rightarrow$  proc  $\rightarrow$  Prop := r\_com (k : CH.atom) e P Q: lc P  $\rightarrow$  $(par (send k e P) (receive k Q)) \rightarrow (par P (\{ope 0 \rightarrow e\} Q))$ r\_cong P P' Q Q' : lc P  $\rightarrow$  lc Q  $\rightarrow$  $P \equiv P' \rightarrow$  $P' \rightarrow Q' \rightarrow$  $Q' \equiv Q \rightarrow$  $P \longrightarrow Q$ r\_scop P P': (forall (L : seq CH.atom) k, k \notin L  $\rightarrow$  (open\_k0 P (CH.Free k))  $\rightarrow$  (open\_k0 P' (CH.Free k)))  $\rightarrow$  $nu P \longrightarrow nu P'$ r\_par P P' Q: lc Q  $\rightarrow$  $P \longrightarrow P' \rightarrow$ par P Q  $\rightarrow$  par P' Q  $r_if_tt P Q: ife tt P Q \longrightarrow P$  $r_if_f P Q: ife ff P Q \longrightarrow Q$ where " $P \rightarrow Q$ " := (red P Q).

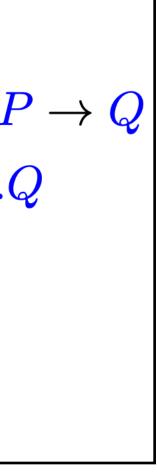
Reserved Notation "P  $\rightarrow$  Q" (at level 70). **Inductive red** : proc  $\rightarrow$  proc  $\rightarrow$  Prop := r\_com (k : CH.atom) e P Q: lc P  $\rightarrow$  $(par (send k e P) (receive k Q)) \rightarrow (par P (\{ope \})$ r\_cong P P' Q Q' : lc P  $\rightarrow$  lc Q  $\rightarrow$  $P \equiv P' \rightarrow$  $P' \rightarrow Q' \rightarrow$  $Q' \equiv Q \rightarrow$  $P \longrightarrow Q$ r\_scop P P': (forall (L : seq CH.atom) k, k \notin L → (open\_k0 P (CH.Free k)) → (open\_k0 P' (CH.Free k))) →  $nu P \longrightarrow nu P'$ r\_par P P' Q: lc Q  $\rightarrow$  $P \longrightarrow P' \rightarrow$ par P Q  $\rightarrow$  par P' Q  $r_if_tt P Q: ife tt P Q \longrightarrow P$  $r_if_f P Q: ife ff P Q \longrightarrow Q$ where " $P \rightarrow Q$ " := (red P Q).

|            | [R-COM]               | $k![e].P \mid k?().Q \rightarrow P \mid Q^e$                    |
|------------|-----------------------|-----------------------------------------------------------------|
|            | [r-cong] $P \equiv I$ | P'and $P' \to Q'$ and $Q' \equiv Q \Rightarrow P$               |
| 0 → e} Q)) | [R-SCOP]              | $\forall k \notin L  P^k \to Q^k \Rightarrow \nu.P \to \nu.Q^k$ |
|            | [R-PAR]               | $P \to P' \Rightarrow P \mid Q \to P' \mid Q$                   |
|            | [R-IF-TT]             | $\texttt{iftt} \texttt{ else } P \texttt{ else } Q \to P$       |
|            | [R-IF-FF]             | $\texttt{ifffelse} \; P \; \texttt{else} \; Q \to Q$            |
|            |                       |                                                                 |



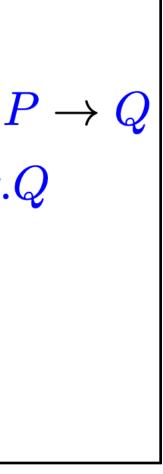
Reserved Notation "P  $\rightarrow$  Q" (at level 70). **Inductive red** : proc  $\rightarrow$  proc  $\rightarrow$  Prop := r\_com (k : CH.atom) e P Q: lc P  $\rightarrow$ (par (send k e P) (receive k Q))  $\rightarrow$  (par P ({ope r\_cong P P' Q Q' : lc P  $\rightarrow$  lc Q  $\rightarrow$  $P \equiv P' \rightarrow$  $P' \rightarrow Q' \rightarrow$  $Q' \equiv Q \rightarrow$  $P \longrightarrow Q$ r\_scop P P': (forall (L : seq CH.atom) k, k \notin L → (open\_k0 P (CH.Free k)) → (open\_k0 P' (CH.Free k))) →  $nu P \longrightarrow nu P'$ r\_par P P' Q: lc Q  $\rightarrow$  $P \longrightarrow P' \rightarrow$ par P Q  $\rightarrow$  par P' Q  $r_if_tt P Q: ife tt P Q \longrightarrow P$  $r_if_f P Q: ife ff P Q \longrightarrow Q$ where " $P \rightarrow Q$ " := (red P Q).

|            | [R-COM]             | $k![e].P \mid k?().Q \rightarrow P \mid Q^e$                     |
|------------|---------------------|------------------------------------------------------------------|
|            | [r-cong] $P \equiv$ | $P' \text{and } P' \to Q' \text{and } Q' \equiv Q \Rightarrow P$ |
|            | [R-SCOP]            | $\forall k \notin L  P^k \to Q^k \Rightarrow \nu.P \to \nu.C$    |
| 0 → e} Q)) | [R-PAR]             | $P \to P' \Rightarrow P \mid Q \to P \mid Q$                     |
|            | [R-IF-TT]           | $\texttt{iftt} \texttt{ else } P \texttt{ else } Q \to P$        |
|            | [R-IF-FF]           | $\texttt{ifff} \texttt{ else } P \texttt{ else } Q \to Q$        |
|            |                     |                                                                  |
|            |                     |                                                                  |

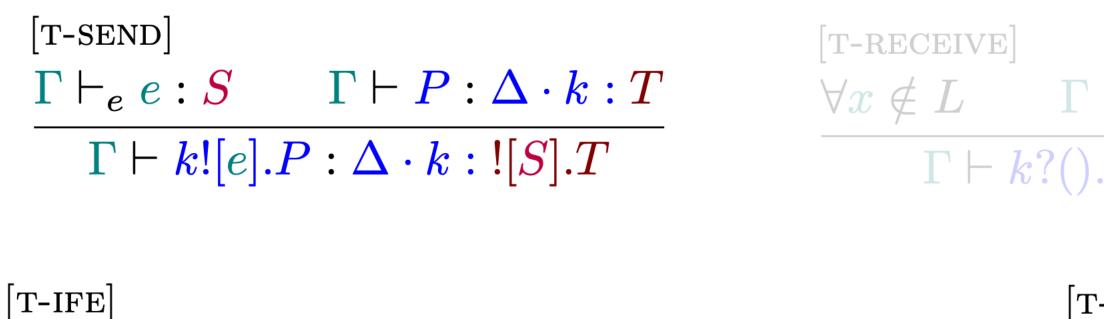


Reserved Notation "P  $\rightarrow$  Q" (at level 70). **Inductive red** : proc  $\rightarrow$  proc  $\rightarrow$  Prop := r\_com (k : CH.atom) e P Q: lc P  $\rightarrow$  $(par (send k e P) (receive k Q)) \rightarrow (par P (\{ope \})$ r\_cong P P' Q Q' : lc P  $\rightarrow$  lc Q  $\rightarrow$  $P \equiv P' \rightarrow$  $P' \rightarrow Q' \rightarrow$  $Q' \equiv Q \rightarrow$  $P \longrightarrow Q$ r\_scop P P': (forall (L : seq CH.atom) k, k \notin L → (open\_k0 P (CH.Free k)) → (open\_k0 P' (CH.Free k))) →  $nu P \longrightarrow nu P'$ r\_par P P' Q: lc Q  $\rightarrow$  $P \longrightarrow P' \rightarrow$ par P Q  $\rightarrow$  par P' Q  $r_if_tt P Q: ife tt P Q \longrightarrow P$  $r_if_f P Q: ife ff P Q \longrightarrow Q$ where " $P \rightarrow Q$ " := (red P Q).

|            | [R-COM]    | $k![e].P \mid k$          | $k?().Q \rightarrow P \mid Q^e$                       |
|------------|------------|---------------------------|-------------------------------------------------------|
|            | [R-CONG] P |                           | $Q'$ and $Q' \equiv Q \Rightarrow P$                  |
| 0 → e} Q)) | [R-SCOP]   | $\forall k \notin L  P^k$ | $\rightarrow Q^k \Rightarrow \nu.P \rightarrow \nu.Q$ |
|            | [R-PAR]    | P 	o P' =                 | $P \mid Q \rightarrow P' \mid Q$                      |
|            | [R-IF-TT]  | iftt els                  | $P \; \texttt{else} \; Q \to P$                       |
|            | [R-IF-FF]  | ifff els                  | $P \; \texttt{else} \; Q 	o Q$                        |
|            |            |                           |                                                       |



## **Typing smolEMTST** Locally nameless became easy by now.



 $\Gamma \vdash_e e : bool$   $\Gamma \vdash P : \Delta$   $\Gamma \vdash Q : \Delta$  $\Gamma \vdash \texttt{if} \ e \ \texttt{else} \ P \ \texttt{else} \ Q : \Delta$ 

> T-NU  $\forall k \notin L \qquad \Gamma \vdash P^k : \Delta \cdot k : \bot$  $\Gamma \vdash \nu.P : \Delta$

 $\forall x \notin L \qquad \Gamma \cdot x : S \vdash P^x : \Delta \cdot k : T$  $\Gamma \vdash k?().P: \Delta \cdot k:?[S].T$ 

[T-PAR]  $\Gamma \vdash P : \Delta \qquad \Gamma \vdash P : \Delta' \qquad \Delta \asymp \Delta'$  $\Gamma \vdash P \mid Q : \Delta \circ \Delta'$ 

[T-INACT]  $completed(\Delta)$  $\Gamma \vdash \texttt{inact} : \Delta$ 

[T-BANG] completed(D)  $\Gamma \vdash P : \cdot$  $\Gamma \vdash ! P : \Delta$ 

[T-NU']  $\Gamma \vdash P : \Delta$  $\Gamma \vdash \nu.P : \Delta$ 



## **Typing smolEMTST** Locally nameless became easy by now.

| $\begin{bmatrix} \text{T-SEND} \end{bmatrix}$ $\Gamma \vdash_e e : S \qquad \Gamma \vdash I$ | $P:\Delta\cdot k$ : |                            | RECEIVE] $ otin L  \Gamma \cdot $ |
|----------------------------------------------------------------------------------------------|---------------------|----------------------------|-----------------------------------|
| $\Gamma \vdash k![e].P:\Delta \cdot$                                                         | k: ![S].T           |                            | $\Gamma \vdash k?().$             |
| [T-IFE]                                                                                      |                     |                            | [T-                               |
| $\Gamma \vdash_e e : bool$ $\Gamma \vdash$                                                   | $P:\Delta$          | $\Gamma \vdash Q : \Delta$ | СС                                |
| $\Gamma \vdash if e else$                                                                    | P else (            | $Q:\Delta$                 | Γ                                 |

T-NU  $\Gamma \vdash P^k : \Delta \cdot k : \bot$  $\forall \mathbf{k} \notin L$  $\Gamma \vdash \nu.P : \Delta$ 

 $\cdot x: S \vdash P^x: \Delta \cdot k: T$  $.P: \Delta \cdot k: ?[S].T$ 

T-PAR  $\Gamma \vdash P : \Delta \qquad \Gamma \vdash P : \Delta' \qquad \Delta \asymp \Delta'$  $\Gamma \vdash P \mid Q : \Delta \circ \Delta'$ 

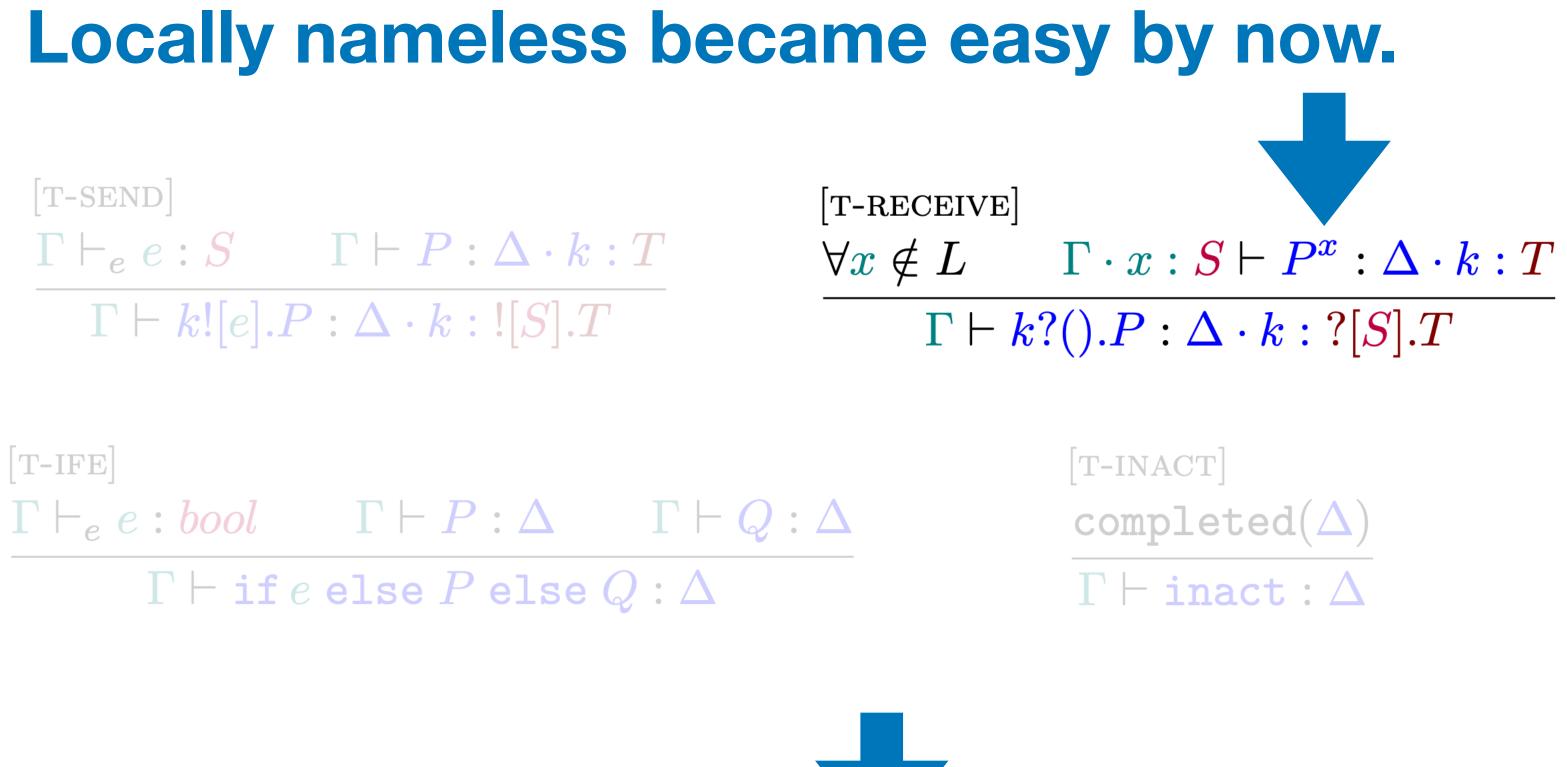
-INACT  $\texttt{ompleted}(\Delta)$  $\Gamma \vdash \texttt{inact} : \Delta$ 

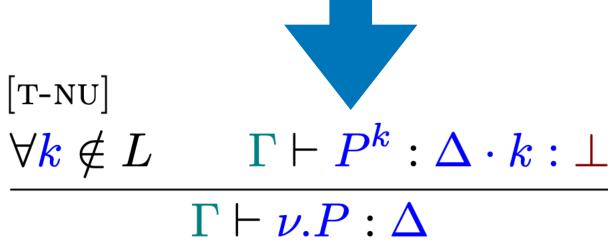
[T-BANG] completed(D)  $\Gamma \vdash P: \cdot$  $\Gamma \vdash ! P : \Delta$ 

[T-NU'] $\Gamma \vdash P : \Delta$  $\Gamma \vdash \nu.P : \Delta$ 



# **Typing smolEMTST**





T-PAR  $\Gamma \vdash P : \Delta \qquad \Gamma \vdash P : \Delta' \qquad \Delta \asymp \Delta'$  $\Gamma \vdash P \mid Q : \Delta \circ \Delta'$ 

[T-BANG] completed(D)  $\Gamma \vdash P: \cdot$  $\Gamma \vdash ! P : \Delta$ 

[T-NU'] $\Gamma \vdash P : \Delta$  $\Gamma \vdash \nu.P : \Delta$ 



## **Typing smolEMTST** Locally nameless became easy by now.

| $\begin{bmatrix} \text{T-SEND} \end{bmatrix}$ $\Gamma \vdash_e e : S \qquad \Gamma \vdash I$ | $P:\Delta\cdot k$ : |                            | RECEIVE] $ otin L  \Gamma \cdot $ |
|----------------------------------------------------------------------------------------------|---------------------|----------------------------|-----------------------------------|
| $\Gamma \vdash k![e].P:\Delta \cdot$                                                         | k: ![S].T           |                            | $\Gamma \vdash k?().$             |
| [T-IFE]                                                                                      |                     |                            | [T-                               |
| $\Gamma \vdash_e e : bool$ $\Gamma \vdash$                                                   | $P:\Delta$          | $\Gamma \vdash Q : \Delta$ | СС                                |
| $\Gamma \vdash if e else$                                                                    | P else (            | $Q:\Delta$                 | Γ                                 |

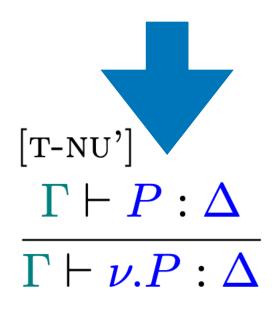
T-NU  $\Gamma dash P^k : \Delta \cdot k : \bot$  $\forall \mathbf{k} \notin L$  $\Gamma \vdash \nu.P : \Delta$ 

 $\cdot x: S \vdash P^x: \Delta \cdot k: T$  $.P: \Delta \cdot k: ?[S].T$ 

T-PAR  $\Gamma \vdash P : \Delta \qquad \Gamma \vdash P : \Delta' \qquad \Delta \asymp \Delta'$  $\Gamma \vdash P \mid Q : \Delta \circ \Delta'$ 

-INACT  $\texttt{ompleted}(\Delta)$  $\Gamma \vdash \texttt{inact} : \Delta$ 

[T-BANG] completed(D)  $\Gamma \vdash P: \cdot$  $\Gamma \vdash ! P : \Delta$ 





```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemm xp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_t p G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
            de' Hde.
  move \Rightarrow H > H
  move:Hde'
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Theorem ExpressionReplacement G P x E S D:
  binds x S G \rightarrow
  oft_exp G E S \rightarrow
  oft G P D \rightarrow
  oft G (s[ x \rightarrow E]pe P) D.
Proof.
Admitted.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Theorem ExpressionReplacement G P x E S D:
  binds x S G \rightarrow
  oft_exp G E S \rightarrow
  oft G P D \rightarrow
  oft G (s[ x \rightarrow E]pe P) D.
Proof.
Admitted.
         Substitutes expressions in processes
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
  binds x S' G \rightarrow
  oft_exp G e' S' \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
Proof.
  move \Rightarrow Hbind Hde' Hde.
  move:Hde'.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
  rewrite ifN_eq ; try assumption.
  by constructor.
Qed.
```

```
Theorem ExpressionReplacement G P x E S D:
  binds x S G \rightarrow
  oft_exp G E S \rightarrow
  oft G P D \rightarrow
  oft G (s[ x \rightarrow E]pe P) D.
Proof.
Admitted.
```

```
Lemma SubstitutionLemmaExp G x S S' e e':
                                                                          Theorem ExpressionReplacement G P x E S D:
  binds x S' G \rightarrow
                                                                             binds x S G \rightarrow
  oft_exp G e' S' \rightarrow
                                                                             oft_exp G E S \rightarrow
  oft_exp G e S \rightarrow oft_exp G (s[ x \rightarrow e']e e) S.
                                                                             oft G P D \rightarrow
Proof.
                                                                             oft G (s[ x \rightarrow E]pe P) D.
  move \Rightarrow Hbind Hde' Hde.
                                                                          Proof.
  move:Hde'.
                                                                          Admitted.
  elim Hde ; try constructor ; try assumption.
  intros.
  case: (EV.eq_reflect x x0).
  move \Rightarrow Sub.
  subst.
  simpl.
  rewrite eq_refl.
  have Heq : S' = S0 by apply: UniquenessBind ; [apply: Hbind | apply: H].
  rewrite-Heq.
  assumption.
                                                                  Lemma ChannelReplacement G P c c' D :
  case/eqP \Rightarrow Hdiff \Rightarrow / \models.
                                                                     oft G P D \rightarrow
  rewrite ifN_eq ; try assumption.
                                                                     def (subst_env c c' D) \rightarrow
  by constructor.
                                                                     oft G (s[ c → chan_of_entry c' ]p P) (subst_env c c' D).
Qed.
                                                                  Proof.
                                                                     case: (boolP (c' = c)) \Rightarrow [/eqP\rightarrow /= c_neq_c']; (* ... *)
```

```
Theorem SubjectReduction G P Q D:
  oft G P D \rightarrow P \rightarrow * Q \rightarrow exists D', oft G Q D'.
Proof.
  move \Rightarrow Hoft PQ; elim: PQ D Hoft \Rightarrow {P} {Q} P.
  + by move \Rightarrow D Hoft; exists D.
  + move \Rightarrow Q R Step QR IH D Hoft.
     move: (SubjectReductionStep Hoft Step) \Rightarrow []D' []bD' Hoft'.
     by move: (IH D' Hoft').
Qed.
```

```
Theorem SubjectReductionStep G P Q D:
  oft G P D \rightarrow P \rightarrow Q \rightarrow exists D', D \rightsquigarrow D' \land oft G Q D'.
Proof.
  move \Rightarrow Op PQ. (* ... *)
```

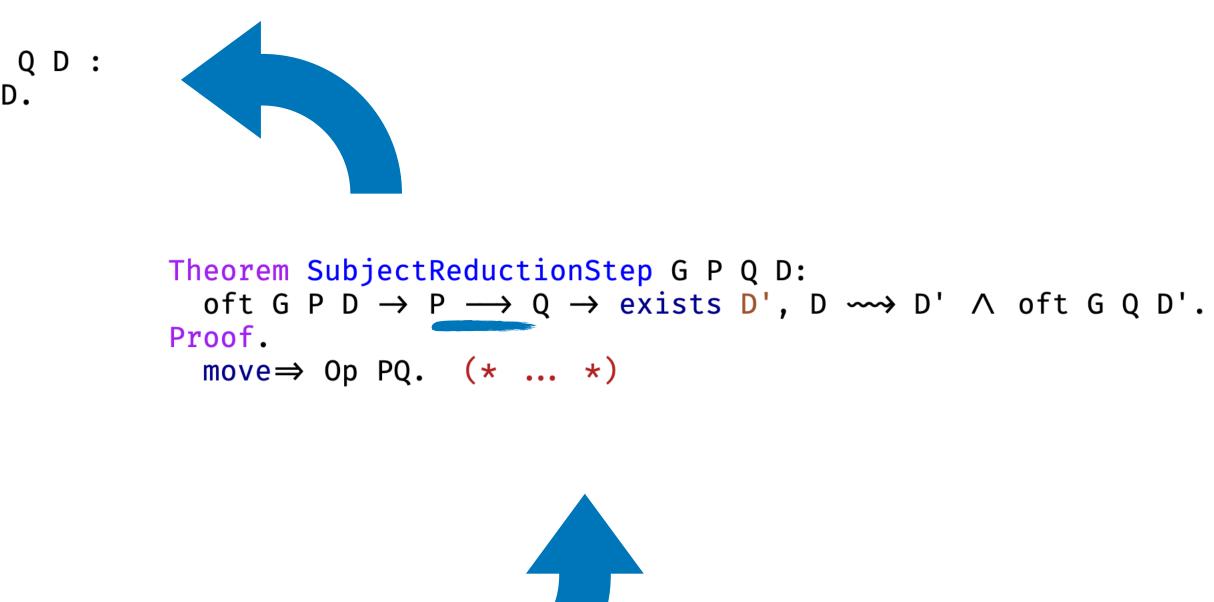
```
Theorem SubjectReduction G P Q D:
  oft G P D \rightarrow P \rightarrow * Q \rightarrow exists D', oft G Q D'.
Proof.
  move \Rightarrow Hoft PQ; elim: PQ D Hoft \Rightarrow {P} {Q} P.
  + by move \Rightarrow D Hoft; exists D.
  + move \Rightarrow Q R Step QR IH D Hoft.
     move: (SubjectReductionStep Hoft Step) \Rightarrow []D' []bD' Hoft'.
     by move: (IH D' Hoft').
Qed.
```

```
Theorem SubjectReductionStep G P Q D:
  oft G P D \rightarrow P \rightarrow Q \rightarrow exists D', D \rightsquigarrow D' \land oft G Q D'.
Proof.
  move \Rightarrow Op PQ. (* ... *)
```

```
Theorem SubjectReduction G P Q D:
  oft G P D \rightarrow P \rightarrow * Q \rightarrow exists D', oft G Q D'.
Proof.
  move \Rightarrow Hoft PQ; elim: PQ D Hoft \Rightarrow {P} {Q} P.
  + by move \Rightarrow D Hoft; exists D.
  + move \Rightarrow Q R Step QR IH D Hoft.
     move: (SubjectReductionStep Hoft Step) \Rightarrow []D' []bD' Hoft'.
     by move: (IH D' Hoft').
Qed.
```

```
Theorem SubjectReductionStep G P Q D:
  oft G P D \rightarrow P \rightarrow Q \rightarrow exists D', D \rightsquigarrow D' \land oft G Q D'.
Proof.
  move \Rightarrow Op PQ. (* ... *)
```

```
Theorem SubjectReduction G P Q D:
  oft G P D \rightarrow P \rightarrow * Q \rightarrow exists D', oft G Q D'.
Proof.
  move \Rightarrow Hoft PQ; elim: PQ D Hoft \Rightarrow {P} {Q} P.
  + by move \Rightarrow D Hoft; exists D.
  + move \Rightarrow Q R Step QR IH D Hoft.
     move: (SubjectReductionStep Hoft Step) \Rightarrow []D' []bD' Hoft'.
     by move: (IH D' Hoft').
Qed.
```



# **Conclusion of the First Act.** No intermediate and no tiny ice cream like at the theatre.

- Deep embedding (LN) binders allows us to fully control the calculus.
- LN demands tribute for that control (in the shape of theorems).
- EMTST (the tool) helps with nominal sets and environments.
- In the next act we explore what do we get if we give up control (using shallow embeddings).