
Multiparty Session Types Meet
Communicating Automata

Pierre-Malo Deniélou and Nobuko Yoshida

Department of Computing, Imperial College London

Abstract. Communicating finite state machines (CFSMs) represent processes
which communicate by asynchronous exchanges of messages via FIFO channels.
Their major impact has been in characterising essential properties of communica-
tions such as freedom from deadlock and communication error, and buffer bound-
edness. CFSMs are known to be computationally hard: most of these properties
are undecidable even in restricted cases. At the same time, multiparty session
types are a recent typed framework whose main feature is its ability to efficiently
enforce these properties for mobile processes and programming languages. This
paper ties the links between the two frameworks to achieve a two-fold goal. On
one hand, we present a generalised variant of multiparty session types that have
a direct semantical correspondence to CFSMs. Our calculus can treat expres-
sive forking, merging and joining protocols that are absent from existing session
frameworks, and our typing system can ensure properties such as safety, bound-
edness and liveness on distributed processes by a polynomial time type checking.
On the other hand, multiparty session types allow us to identify a new class of CF-
SMs that automatically enjoy the aforementioned properties, generalising Gouda
et al’s work [13] (for two machines) to an arbitrary number of machines.

1 Introduction
Multiparty Session Types The importance that distributed systems are taking today
underlines the necessity for precise specifications and full correctness guarantees for
interactions (protocols) between distributed components. To that effect, multiparty ses-
sion types [3, 15] are a type discipline that can enforce strong communication safety for
distributed processes [3, 15], via a choreographic specification (called global type) of
the interaction between several peers. Global types are then projected to end-point types
(called local types), against which processes can be statically type-checked. Well-typed
processes are guaranteed to interact correctly, following the global protocol. The tool
chain (projection and type-checking) is decidable in polynomial time and automatically
guarantees properties such as type safety, deadlock freedom, and progress. Multiparty
session types are thus directly applicable to the design and implementation of real dis-
tributed programming languages. They are used for structured protocol programming
in contexts such as security [9, 24], protocol optimisations for distributed objects [23]
and parallel algorithms [19], and have recently lead to industrial projects [21, 22].

Communicating Automata or Communicating Finite State Machines (CFSMs) [5],
are a classical model for protocol specification and verification. Before being used in
many industrial contexts, CFSMs have been a pioneer theoretical formalism in which

1

distributed safety properties could be formalised and studied. Building a connection
between communicating automata and session types allows to answer some open ques-
tions in session types which have been asked since [14]. The first question is about
expressiveness: to which class of CFSMs do session types correspond? The second
question concerns the semantical correspondence between session types and CFSMs:
how do the safety properties that session types guarantee relate to those of CFSMs? The
third question is about efficiency: why do session types provide polynomial algorithms
while general CFSMs are undecidable?

A First Answer to these questions has been recently given in the binary case: a two-
machine subclass (which had been studied by Gouda et al. in 1984 [13] and later by
Villard [25]) of half-duplex systems [7] (defined as systems where at least one of the
two communication buffers between two parties is always empty) has been found to
correspond to binary session types [14]. This subclass, compatible deterministic two-
machine without mixed states [13] (see § 3 and § 7), automatically satisfies the safety
properties that binary session types can guarantee. It also explains why binary session
types offer a tractable framework since, in two-machine half-duplex systems, safety
properties and buffer boundedness are decidable in polynomial time [7]. However, in
half-duplex systems with three machines or more, these problems are undecidable (The-
orem 36 [7]). This shows that an extension to multiparty is very challenging, leading to
two further questions. Can we use a multiparty session framework [15] to define a new
class of deadlock-free CFSMs with more than two machines? How far can we extend
global session type languages to capture a wider class of well-behaved CFSMs, still
preserving expected properties and enabling type-checking processes and languages?

Our Answer is a theory of generalised multiparty session types, which can automat-
ically generate, through projection and translation, a new class of safe CFSMs, which
we call multiparty session automata (MSA). We use MSA as a semantical interpreta-
tion of types to prove the safety and liveness of expressive multiparty session mobile
processes, allowing complexly structured protocols, including the Alternating Bit Pro-
tocol, to be simply represented. Our generalised multiparty session type framework can
be summarised by the following diagram:

Generalised
Global Type

Projection //
Local Types

≈
CFSMs (MSA)

Type checking //
General

Multiparty
Processes

Generalised Global Types This paper proposes a new global type syntax which en-
compasses previous systems [3, 15] with extended constructs (join and merge) and gen-
eralised graph syntax. Its main feature is to explicitly distinguish the branching points
(where choices are made) from the forking points (where concurrent, interleaved inter-
action can take place). Such a distinction is critical to avoid the state explosion and to
directly and efficiently type session-based languages and processes.

Fig. 1 illustrates our new syntax on a running example, named Trade. For the intu-
ition, Trade is also represented as a BPMN-like [4] activity diagram, where ’+’ is for
exclusive gateways and ’|’ for parallel ones, following session type conventions.

This scenario (from [6, § 7.3]) comprehensively combines recursion, fork, join,
choice and merge. It models a protocol where a seller S relies on a broker B to ne-
gotiate and sell an item to a client C. The seller sends a message Item to the broker, the

2

Fig. 1. Trade Example: Global Type and CFSM

GTrade = def
x0 = S→ B : Item〈string〉;x1

x5 +x1 = x2
x2 = x3 +x6
x3 = B→ C : Offer〈nat〉;x4
x4 = C→ B : Counter〈nat〉;x5
x6 = x7 | x8
x7 = B→ S : Final〈nat〉;x9
x8 = B→ C : Result〈nat〉;x10

x9 | x10 = x11
x11 = end in x0

broker then has a choice between entering the negotiation loop Offer-Counter with the
client as many times as he chooses, or finishing the protocol by concurrently sending
both messages Final and Result to the seller and the client respectively.

GTrade is called a global type as it represents the choreography of the interactions
and not just a collection of local behaviours. It is of the form def G̃ in x0 where G̃
represents the transitions between states, and where x0 is the initial state of all the
participants. A transition of the form x0 = S→ B : Item〈string〉;x1 corresponds to the
emission of a message Item carrying a value of type string from S to B, followed by the
interactions that happen in x1. A transition x2 = x3 +x6 denotes a choice (done by one
of the participants, here B) between following with x3 or x6. A transition x6 = x7 | x8
describes that the interaction should continue concurrently with the actions of x7 and
of x8. In a symmetric way, a transition x5 + x1 = x2 merges two branches that are
mutually exclusive, while a transition x9 | x10 = x11 joins two concurrent interaction
threads reaching points x9 and x10 into a single thread starting from x11.

Local Types and CFSMs We build the formal connection between multiparty session
types, CFSMs and processes by first projecting a global type to the local type of each
end-point. We then show that the local types are implementable as CFSMs. This de-
fines a new subclass of CFSMs, named Multiparty Session Automata, or MSA, that are
not limited to two machines or to half-duplex communications, and that automatically
satisfy distributed safety and progress.

To illustrate this relationship between local types and MSA, we give in Fig. 1 the
CFSM representation of Trade: on the left is the seller S, at the centre the broker B, on
the right the client C. These communicating automata correspond to the collection of
local behaviours represented by the local types (shown later in Ex. 3.1). Each automaton
starts from an initial state S0, B0 or C0 and allows some transitions to be activated.
Transitions can either be outputs of the form SB!Item where SB indicates the channel
between the seller S and the broker B and where Item is the message label; or inputs
of the symmetric form SB?Item. When a sending action happens, the message label is
appended to the channel’s FIFO queue. Activating an input action requires the expected
label to appear on top of the specified queue.

The connection between local types and CFSM gives a formal semantics to global
types and creates a correspondence between CFSM and session type properties.

3

Fig. 2. Generalised Global Types

G ::= def G̃ in x Global type

G ::= x = p→ p′ : l〈U〉;x′ Labelled messages
| x = x′ | x′′ Fork
| x = x′+x′′ Choice

U ::= 〈G〉 | bool | nat | · · · Sorts

| x | x′ = x′′ Join
| x+x′ = x′′ Merge
| x = end End

Our Contributions are listed below, with the corresponding section number:

– We introduce new generalised multiparty (global and local) session types that solve
open problems of expressiveness and algorithmic projection posed in [6] (§ 2).

– We give a CFSM interpretation of local types that defines a formal semantics for
global types and allows the standardisation of distributed safety properties between
session type systems and communicating automata (§ 3).

– We define multiparty session automata, a new communicating automata subclass
that automatically satisfy strong distributed safety properties, solving open ques-
tions from [7, 25] (§ 3).

– We develop a new typing system for multiparty session mobile processes gener-
alised with choice, fork, merge and join constructs (§ 4, § 5), and prove that typed
processes conform the safety and liveness properties defined in CFSMs (§ 6).

– We compare our framework with existing session type theories and CFSMs re-
sults (§ 7). Our framework (global type well-formedness checking, projection, type-
checking) is notably polynomial in the size of the global type or mobile processes.

The appendix provides proofs, auxiliary definitions and examples.

2 Generalised Multiparty Sessions

2.1 Global Types for Generalised Multiparty Sessions

This subsection introduces new generalised global types, whose expressiveness encom-
passes previous session frameworks. The syntax is defined in Fig. 2.The new features
are flexible fork, choice, merge and join operations for precise thread management. A
global type G = def G̃ in x0 describes an interaction between a fixed number of par-
ticipants. The prescribed interaction starts from x0, which we call the initial state, and
proceeds according to the transitions specified in G̃. The state variables x in G̃ rep-
resent the successive distributed states of the interaction. Transitions can be labelled
message exchanges x = p→ p′ : l〈U〉;x′ where p and p′ denote the sending and re-
ceiving participants (process identities), U is the payload type of the message and l its
label. This transition specifies that p can go from x to the continuation x′ by sending
message l, while p′ goes from x to x′ by receiving it. All other participants can go from
x to x′ for free. Sort types § include shared channel types 〈G〉 or base types. Message
types U are either value types S or local types T (which correspond to the behaviour of
one of the session participants) for delegation, which is defined later.x = x′+x′′ repre-
sents the choice (made by exactly one participant) between continuing with x′ or x′′ and

4

x = x′ | x′′ represents forking the interactions, allowing the interleaving of actions at x′
and x′′. These forking threads are eventually collected by joining construct x′ | x′′ = x.
Similarly choices are closed by merging construct x′ + x′′ = x, where two mutually
exclusive paths share a continuation. x = end denotes session termination.

The motivation behind this choice of graph syntax is to support general graphs.
A traditional global type syntax tree, with operators fork | and choice +, even with
recursion [3, 6, 11, 15], is limited to series-parallel graphs.

Example 2.1 (Generalised Global Types)). We now give several examples in Fig. 3,
with their graph representation. We keep this representation informal throughout this
paper (although there is an exact match with the syntax: variables are edges and transi-
tions are nodes). The examples are numbered 1–7, with increasing complexity.

1. A simple one-message (Msg of type nat) is exchanged between Alice and Bob.
2. A protocol with a simple choice between messages Book and Film.
3. Alice and Bob concurrently exchange the messages Book and Film.
4. A protocol where Alice keeps sending successive messages to Bob (recursion is

written using merging).
5. The Trade example from § 1 (Fig. 1) shows how choice, recursion and parallelism

can be integrated to model a three party protocol.
6. G6 features an initial choice between directly contacting Carol or to do it through

Bob. Note that without the last interaction from Carol to Bob (in x6), if the chosen
path leads to x3, Bob enters a deadlock, waiting forever for a message from Alice.

7. GAB in Fig. 3 gives a representation of the Alternating Bit Protocol. Alice repeat-
edly sends to Bob alternating messages Msg1 and Msg2 but will always concur-
rently wait for the acknowledgement Acki to send Msgi. This interaction structure
requires a general graph syntax and is thus not representable in any existing session
type framework, and is difficult in other formalisms (see § 7). We emphasise the
fact that, not only it is representable in our syntax, but our framework is able to
demonstrate its progress and safety and enforce it on realistic processes.

2.2 Well-formed Global Types

This subsection defines three well-formedness conditions for global types.

Sanity Conditions within global types prevent possible syntactic confusions about
which continuations to follow at any given point. A global type G = def G̃ in x0 satisfies
the sanity conditions if it satisfies the following conditions.

1. (Unambiguity) Every state variable x except x0 should appear exactly once on the
left-hand side and once on the right-hand side of the transitions in G̃.

2. (Unique start) x0 appears exactly once, on the left-hand side.
3. (Unique end) end appears at most once.
4. (Thread correctness) The transitions G̃ define a connected graph where threads

are always collected by joins.

5

Fig. 3. Examples of Global Types

1.
G1 = def x0 = Alice→ Bob : Msg〈nat〉;x1

x1 = end in x0

2.

G2 = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

3.

G3 = def x0 = x1 | x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 | x4 = x5
x5 = end in x0

4.
G4 = def x0 +x2 = x1

x1 = Alice→ Bob : Msg〈string〉;x2 in x0

6.

G6 = def x0 = x1 +x3
x1 = Alice→ Bob : Book〈string〉;x2
x2 = Bob→ Carol : Item〈nat〉;x4
x3 = Alice→ Carol : Film〈string〉;x5

x4 +x5 = x6
x6 = Carol→ Bob : Order〈string〉;x7
x7 = end in x0

7.

GAB = def x0 = x1 | x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 | x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 | x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 | x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 | x14 = x3 in x0

The conditions (1–3) are self-explanatory. (Thread correctness) aims at verifying con-
nexity, the ability to reach end (liveness) and that global types should always join states
that occur concurrently and only them: this prevents both deadlocks and state explo-
sion (see Appendix B.2 for the polynomial verification algorithm). In G¬thr in Fig. 4,
an illegal join waits for two mutually exclusive messages: as a consequence, Bob is in a
deadlock, waiting for both Book and Film to arrive from Alice.

6

Fig. 4. Incorrect Global Types

G¬thr = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 | x4 = x5
x5 = Bob→ Alice : Price〈nat〉;x6
x6 = end in x0

G¬loc = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

Local Choice is essential for the consistency of a global type with respect to choice
(branching). For G = def G̃ in x0, we need to check that each choice is clearly la-
belled, local to a participant (the choice of which branch to follow should be made by
a unique participant) and propagated to the others. To this effect, we define a function
Rcv(G̃)(x) in Fig. 5, which computes the set of all the participants that will be ex-
pecting at least one message starting from state x. Additionally, Rcv(G̃)(x) returns the
label l of the received message and the merging points x̃ encountered. We say that the
equality Rcv(G̃)(x1) = Rcv(G̃)(x2) holds if ∀(p : l1 : x̃1) ∈ Rcv(G̃)(x1),∀(p : l2 : x̃2) ∈
Rcv(G̃)(x2), l1 6= l2∨ x̃1, x̃2 share a non-null suffix (i.e. the two branches have merged).
Note that G6 in Ex. 2.1 satisfies this condition (the Rcv sets of both branches contain
Bob and Carol).
To guarantee that choices are local to a participant, we also define a function that asserts
that, for a choice x = x1 + x2 ∈ G̃, a unique sender p is active in each branch x1 and
x2. This is written ASend(G̃)(x) = p and is undefined if there is more than one active
sender (i.e. if the choice is not localised at a unique participant p) (the definition is in
Appendix B.3). As an example, Fig. 4 gives an illegal global type G¬loc where Alice
and Bob are respectively the active sender of branches x1 and x2: as both branches do
not agree, the mutual exclusion of Book and Film can be violated.

Definition 2.1 (Local Choice). A global type G = def G̃ in x0 satisfies the local choice
conditions if for every transition x = x′ + x′′ ∈ G̃, we have (1) (Choice awareness)
Rcv(G̃)(x′) = Rcv(G̃)(x′′); and (2) (Unique sender) ∃p,ASend(G̃)(x) = p.

Linearity In order to avoid processes with race-conditions, we impose that no partic-
ipant can be faced with two concurrent receptions where messages can have the same
label. This condition, linearity, is enforced by comparing the results of Lin(G̃)(x1) and
Lin(G̃)(x2) whenever a forking transition x = x1 | x2 is in G̃. The Lin function works in
a similar way on message labels as the Rcv function on message receivers (linearity is
to forks what choice awareness is to choice) and it thus omitted here. As an example,
linearity would prevent the labels Msg1 and Msg2 from both being renamed Msg0 in
GAB (since they can be received concurrently and thus confused), but would allow the
two labels of G3 to be identical (they are received by two different parties). Note that
the linearity condition incidentally prevents the unbounded creation of threads.

Definition 2.2 (Linearity). A global type G = def G̃ in x0 satisfies the linearity condi-
tion if, for every transition x = x′ | x′′ ∈ G̃, we have Lin(G̃)(x′) = Lin(G̃)(x′′).

7

Fig. 5. Receiver Computation (up to permutation of | and +)

Rcv(G̃)(x) = Rcv(G̃, /0, /0)(x) (remembers recursive calls and receivers)

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ ∈ p̃ or if x | x′′ = x′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = {p′ : l : x̃}∪Rcv(G̃, x̃,p′p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ /∈ p̃
Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′)∪Rcv(G̃, x̃, p̃)(x′′) if x = x′+x′′ ∈ G̃ or x = x′ | x′′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = /0 if x+x′ = x′′ ∈ G̃∧x′′ ∈ x̃ or if x = end ∈ G̃

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃x′′, p̃)(x′′) if x′+x = x′′ ∈ G̃∧x′′ /∈ x̃

Well-formedness We say that a global type G= def G̃ in x0 is well-formed, if it satisfies
the sanity, local choice and linearity conditions. These conditions are related to similar
CFSM properties, as discussed in § 3.2. We can easily check that global types from
Ex. 2.1 are well-formed. Since Rcv, ASend and Lin can be computed in polynomial
time in the size of G by a simple syntax graph traversal, we have:

Proposition 2.1 (Well-formedness Verification). Given G, we can determine whether
G is well-formed or not in polynomial time.

3 Multiparty Session Automata (MSA) and their Properties

This section starts by defining local types, details the translation from local types into
CFSMs, and shows that these CFSMs guarantee the properties given in § 3.3. We call
this class of communicating systems multiparty session automata (MSA).

3.1 Local Types and the Projection Algorithm

Local types are defined in Fig. 6. They represent the actions of session end-points that
each process implementation must follow. As for global types, a local type T follows
the shape of a state machine definition: local types are of the form def T̃ in x0.

The local type for send (!〈p, l〈U〉〉) corresponds to the action of sending to p a
message with label l and type U , while receive (?〈p, l〈U〉〉) is the action of receiving
from p a message with label l and type U . Other behaviours are the indirection (nop),
internal choice, external choice, merge, fork, join and end. Note that merge is used for
both internal and external choices.

We define the projection of a well-formed global type G to the local type of partici-
pant p (written G � p) in Fig. 7. The projection is straightforward: x = p→ q : l〈U〉;x′ is
an output from p’s viewpoint and an input from q’s viewpoint; otherwise it creates an in-
direction link from x to x′ (i.e. this message exchange is invisible). Choice x = x′+x′′
is projected to the internal choice if p is the unique (thanks to the local choice well-
formedness condition of definition 2.1) participant deciding on which branch to choose;
otherwise the projection gives an external choice. For local types, we also define a con-
gruence relation ≡ over T̃ which eliminates the indirections (T̃ ,x = x′ ≡ T̃ [x/x′]) and
locally irrelevant choices, and removes the unused local threads. Appendix C.2 gives
the definition.

Thanks to the simplicity of projection, we have:

8

Fig. 6. Generalised Local Types

T ::= def T̃ in x local type
T ::= x =!〈p, l〈U〉〉.x′ send | x = x′⊕x′′ internal choice | x = x′ | x′′ fork
| x =?〈p, l〈U〉〉.x′ receive | x = x′ & x′′ external choice | x | x′ = x′′ join
| x = x′ indirection | x+x′ = x′′ merge | x = end end

Proposition 3.1 (Projection). Given a well-formed G, the computation of G � p is lin-
ear in the size of G.

Example 3.1 (Trade Example). We illustrate our projection algorithm by showing the
result of the projection of the global type GTrade from § 1 to the three local types of the
seller TTradeS, the broker TTradeB and the client TTradeC. Local type congruence rules are
used to simplify the result. When comparing with the CFSMs of Fig. 1, one can observe
the similarities but also that local types make the interaction structure clearer and more
compact thanks to more precise type constructs (⊕, & and |).

3.2 Communicating Finite State Machines

In this subsection, we give some preliminary notations (following [7]) and definitions
that are relevant to establishing the CFSM connection to local types.

Definitions ε is the empty word. A is a finite alphabet and A∗ is the set of all finite
words over A. |x| is the length of a word x and x.y or xy the concatenation of two
words x and y. Let P be a set of process identities fixed throughout the paper: P⊆
{Alice,Bob,Carol, . . . ,A,B,C, . . . ,S, . . .}.

Definition 3.1 (CFSM). A communicating finite state machine is a finite transition
system given by a 5-tuple M = (Q,C,q0,A,δ) where (1) Q is a finite set of states; (2)
C = {pq ∈P2 | p 6= q} is a set of channels; (3) q0 ∈ Q is an initial state; (4) A is a finite
alphabet of messages, and (5) δ ⊆ Q×(C×{!,?}×A)×Q is a finite set of transitions.

In transitions, pq!a denotes the sending action of a from process p to process q, and
pq?a denotes the receiving action of a from p by q. π,π ′, ... range over actions. A
state q ∈ Q whose outgoing transitions are all labelled with sending (resp. receiving)
actions is called a sending (resp. receiving) state. A state q∈Q which does not have any
outgoing transition is called a final state. If q has both sending and receiving outgoing
transitions, then q is called mixed.

A path in M is a finite sequence of q0, . . . ,qn (n ≥ 1) such that (qi,π,qi+1) ∈ δ

(0 ≤ i ≤ n− 1), and we write q π−→q′ if (q,π,q′) ∈ δ . M is connected if for every state
q 6= q0, there is a path from q0 to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,δ) is deterministic if for all states q ∈ Q and all actions
π , (q,π,q′),(q,π,q′′) ∈ δ imply q′ = q′′.1

1 “Deterministic” often means the same channel should carry a unique value, i.e. if (q,c!a,q′) ∈
δ and (q,c!a′,q′′) ∈ δ then a = a′ and q′ = q′′. Here we follow a different definition [7] in
order to represent branching type constructs.

9

Fig. 7. Projection Algorithm

def G̃ in x � p = def G̃ �G̃ p in x
x = p→ p′ : l〈U〉;x′ �G̃ p = x =!〈p′, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′ = x =?〈p, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′′ = x = x′ (p /∈ {p,p′})

x | x′ = x′′ �G̃ p = x | x′ = x′′

x = x′ | x′′ �G̃ p = x = x′ | x′′

x = x′+x′′ �G̃ p = x = x′⊕x′′

(if p= ASend(G̃)(x))
x = x′+x′′ �G̃ p = x = x′ & x′′

(otherwise)
x+x′ = x′′ �G̃ p = x+x′ = x′′

x = end �G̃ p = x = end

Definition 3.2 (CS). A (communicating) system S is a tuple S = (Mp)p∈P of CFSMs
such that Mp = (Qp,C,q0p,A,δp).

Let S = (Mp)p∈P such that Mp = (Qp,C,q0p,A,δp) and δ =]p∈Pδp. A configuration
of S is a tuple such that s = (~q;~w) with ~q = (qp)p∈P with qp ∈ Qp and ~w = (wpq)p6=q∈P
with wpq ∈ A∗. A configuration s′ = (~q′;~w′) is reachable from another configuration
s = (~q;~w) by the firing of the transition t, written s→ s′ or s t−→s′, if there exists a ∈ A
such that either:

1. t = (qp,pq!a,q′p) ∈ δp and (a) q′
p′ = qp′ for all p′ 6= p; and (b) w′pq = wpq.a and

w′
p′q′ = wp′q′ for all p′q′ 6= pq; or

2. t = (qq,pq?a,q′q) ∈ δq and (a) q′
p′ = qp′ for all p′ 6= q; and (b) wpq = a.w′pq and

w′
p′q′ = wp′q′ for all p′q′ 6= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content
a from a channel pq. The reflexive and transitive closure of→ is→∗. For a transition
t = (s,π,s′), we write `(t) = π . We write s1

t1 · · · tm−−−→sm+1 for s1
t1−→s2 · · · tm−→sm+1. We use

the metavariable ϕ to designate sequences of transitions of the form t1 · · · tm. The initial
configuration of the system is s0 = (~q0;~ε) with ~q0 = (q0p)p∈P. A final configuration of
the system is s f = (~q;~ε) with all qp ∈~q final. A configuration s is reachable if s0→∗ s
and we define the reachable set of S as RS(S) = {s | s0→∗ s}.

Properties Let S be a communicating system, t one of its transitions and s = (~q;~w) one
of its configurations. The following definitions follow [7, Definition 12].

1. s is stable if all its buffers are empty, i.e., ~w =~ε .
2. s is a deadlock configuration if ~w =~ε and each qp is a receiving state, i.e. all ma-

chines are blocked, waiting for messages.
3. s is an orphan message configuration if all qp ∈~q are final but ~w 6= /0, i.e. there is at

least an orphan message in a buffer.
4. s is an unspecified reception configuration if there exists q ∈P such that qq is a

receiving state and (qq,pq?a,q′q) ∈ δ implies that |wpq| > 0 and wpq 6∈ aA∗, i.e qq
is prevented from receiving any message from buffer pq.

The set of receivers of transitions s1
t1 · · · tm−−−→sm+1 is defined as Rcv(t1 · · · tm) = {q | ∃i ≤

m, ti = (si,pq?a,si+1)}. The set of active senders are defined as ASend(t1 · · · tm) = {p |
∃i ≤ m, ti = (si,pq!a,si+1)∧ ∀k < i. tk 6= (sk,p

′p?b,sk+1)} and represent the partici-
pants who could immediately send from state s1. These definitions match the global

10

Fig. 8. Trade Example: Local Types

TTradeS = def x0= !〈SB, Item〈string〉〉.x1
x1=?〈BS,Final〈nat〉〉.x10

x10=end in x0

TTradeC = def x5+x0=x2
x2=x3 & x6
x3=?〈BC,Offer〈nat〉〉.x4
x4= !〈CB,Counter〈nat〉〉.x5
x6=?〈BC,Result〈nat〉〉.x10

x10=end in x0

TTradeB = def x0=?〈SB, Item〈string〉〉.x1
x5 +x1=x2

x2=x3⊕x6
x3= !〈BC,Offer〈nat〉〉.x4
x4=?〈CB,Counter〈nat〉〉.x5
x6=x7 | x8
x7= !〈BS,Final〈nat〉〉.x9
x8= !〈CB,Result〈nat〉〉.x10

x9 | x10=x11
x11=end in x0

types ones. A sequence of transitions (an execution) s1
t1−→s2 · · ·sm

tm−→sm+1 is said to be
k-bounded if all channels of all intermediate configurations si do not contain more than
k messages.

Definition 3.3 (properties). Let S be a communicating system.

1. S satisfies the local choice property if, for all s∈ RS(S) and s ϕ1−→s1 and s ϕ2−→s2, there
exists ϕ ′1,ϕ

′
2,s
′
1,s
′
2 such that s1

ϕ ′1−→s′1 and s2
ϕ ′2−→s′2 with Rcv(ϕ1ϕ ′1) = Rcv(ϕ2ϕ ′2) and

ASend(ϕ1ϕ ′1) = ASend(ϕ2ϕ ′2).
2. S is deadlock-free (resp. orphan message-free, reception error-free) if s ∈ RS(S), s

is not a deadlock (resp. orphan message, unspecified reception) configuration.
3. S is strongly bounded if the contents of buffers of all reachable configurations form

a finite set.
4. S satisfies the progress property if for all s ∈ RS(S), s −→∗ s′ implies s′ is either

final or s′ −→ s′′; and S satisfies the liveness property2 if for all s ∈ RS(S), there
exists s−→∗ s′ such that s′ is final.

3.3 Multiparty session automata (MSA)

We now give a translation from local types to CFSMs, specifying the sequences of
actions in a local type as transitions of a CFSM. We use the following notation to keep
track of local states:

X ::= x | X | X X[] ::= | X[] | X | X | X[]

We also define in Fig. 9 an equivalence relation ≡T̃ that identifies two states if one of
them allows the actions of the other:

Definition 3.4 (translation from local types to MSA). Let T = def T̃ in x0 be the
local type of participant p projected from G. The automaton corresponding to T is
A(T) = (Q,C,q0,A,δ) where:

2 The terminology follows [6].

11

Fig. 9. Local State Equivalence for Local State Automata

X | X′ ≡T̃ X′ | X X | (X′ | X′′)≡T̃ (X | X′) | X′′

x = x′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ | x′′ ∈ T̃
X[x]≡T̃ X[x′ | x′′]

x | x′ = x′′ ∈ T̃
X[x | x′]≡T̃ X[x′′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x′]≡T̃ X[x′′]

– Q is defined as the set of states X built from the recursion variables {xi} of T. Q is
defined up to the equivalence relation ≡T̃ (Fig. 9).

– C = {pq | p,q ∈G}; q0 = x0; and A is the set of {l ∈G}

– δ is defined by:
(X[x],(pp′!l),X[x′]) ∈ δ if x =!〈p′, l〈U〉〉.x′ ∈ T̃
(X[x],(p′p?l),X[x′]) ∈ δ if x =?〈p′, l〈U〉〉.x′ ∈ T̃

We call Multiparty Session Automata (MSA), communicating systems S of the form
(A(G � p))p∈G when G is a well-formed global type.

The generation of an MSA from a global type G is exponential in the size of G. It
is however polynomial in the absence of parallel composition. Note that neither well-
formedness nor type-checking requires the explicit generation of MSAs.

MSA Examples The following shows local types (projections from Ex. 2.1) and their
corresponding automata. The Trade example from Fig. 1 and Ex. 3.1 is another com-
plete example of MSA.

1.
G1 � Alice= def x0 = !〈Bob,Msg〈nat〉〉.x1

x1 = end in x0

2.

G2 � Bob= def x0 = x1&x2
x1 = ?〈Alice,Book〈string〉〉.x3
x2 = ?〈Alice,Film〈string〉〉.x4

x3 +x4 = x5
x5 = end in x0

3.

G3 � Alice= def x0 = x1 | x2
x1 = !〈Bob,Book〈string〉〉.x3
x2 = ?〈Bob,Film〈string〉〉.x4

x3 | x4 = x5
x5 = end in x0

1. The MSA of the projection of G1 to Alice has two states and one transition.
2. Since Bob is receiving Alice’s messages, the projection of G2 to Bob gives an

external choice. The automaton has two nodes x0 (equivalent to x1 and x2) and x5
(equivalent to x3 and x4), and two transitions between these nodes.

3. G3 has two concurrent communications. It results in an automaton for Alice with
four nodes, reflecting the interleavings of the concurrent interactions.

12

3.4 Properties of MSAs

This subsection proves that MSA satisfy the properties defined in definition 3.3. We
qualify executions of the form s ϕ1−→s1

ϕ2−→s2 with s ∈ RS(S) such that ϕ1 is an alter-
nation of sending and corresponding receive actions (i.e. the action pq!a is immedi-
ately followed by pq?a) and ϕ2 is only sending actions as being stable-outputs. The
key property is Lemma 3.1(3), whose proof is non-trivial and relies on Lemma 3.1(2)
and well-formed conditions of global types (except choice awareness in definition 2.1).
Then Lemma 3.1(4) (the existence of stable executions [7]) directly leads to unspecified
reception error-freedom and orphan message freedom. For the deadlock-freedom, we
require choice awareness of Lemma 3.1(1), ensured by the same condition in definition
2.1. Theorem 3.2 uses the results from [10, § 3]; in Theorem 3.3, progress is proved
from Theorem 3.1, while liveness directly uses the thread correctness condition.

Lemma 3.1 (Properties of MSAs). Suppose S is a MSA.

1. (local choice) S satisfies a local choice condition.
2. (diamond property) Suppose s ∈ RS(S) and s t1−→s1 and s t2−→s2 where (1) t1 and t2 are

both inputs; or (2) t1 is an output and t2 is an input, then there exists s′ such that
s1

t ′1−→s′ and s2
t ′2−→s′ where `(t1) = `(t ′2) and `(t2) = `(t ′1).

3. (stable-outputs decomposition) Suppose s ∈ RS(S). Then there exists s0
ϕ1−→·· · ϕn−→s

where each ϕi is stable-outputs.
4. (stable) Suppose s0

ϕ1−→·· · ϕn−→s with ϕi stable-outputs. Then there exists an execution
ϕ ′−→ such that s ϕ ′−→s3 and s3 is stable, and there is a 1-buffer execution s0

ϕ ′′−→s3.

Theorem 3.1 (Safety Properties). A MSA S is free from unspecified reception errors,
orphan messages and deadlock.

Theorem 3.2 (Strong Boundedness). Consider a MSA S, generated from the local
types of G. If all actions that are within a cycle in G are also part of causal input-
output cycle (IO-causality) [10, 15],3 then S is strongly bounded.

Theorem 3.3 (Progress and Liveness). A MSA S satisfies the progress property. If a
MSA S is generated from the local types of G and G contains end, then S satisfies the
liveness property.

4 General Multiparty Session Processes

This section introduces general multiparty session processes which are designed fol-
lowing the shape of the multiparty global types presented in § 2.1. Our new system
handles (1) new external and internal choice operators that allow branching with dif-
ferent receivers and merging with different senders; and (2) forking and joining threads
which are not verifiable by standard session type systems [3, 6, 15].

13

Fig. 10. Process and Network Syntax

v ::= a | s[p] | true | false | ... values

P ::= def P̃ in X definition

P ::= process transition
| x(x̃) = x〈G〉.x′(ẽ) init

| x(x̃) = x[p](y).x′(ẽ) request

| x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) send

| x(x̃) = x?〈p, l(y)〉.x′(ẽ) receive

| x(x̃) = x′(ỹ) | x′′(z̃) parallel

| x(x̃) =if e then x′(ẽ′) else x′′(ẽ′′) conditional

| x(x̃) = x′(x̃) & x′′(x̃) external choice

| x(ỹ) | x′(z̃) = x′′(x̃) join

| x(x̃)+x′(x̃) = x′′(x̃) merge

| x(x̃) = (νa) x′(ax̃) new name

| x(x̃) = 0 null

e ::= v | x | e∧ e | ... expression

h ::= /0 | h · (p,q, l〈v〉) messages

X ::= state
| x(ṽ) thread

| X | X parallel

| (νa)X restriction
| 0 null

N ::= network
| P def

| N || N parallel

| (νa)N new name
| 0 null
| (νs)N new session
| s : h queue

| a〈s〉[p] invitation

Syntax The syntax of processes is defined in Fig. 10. While it follows some standard
constructs [3], the control flow and functional flavour are new in session calculi and al-
low a simple type checking verification technique. Note that this syntax is not meant to
be directly written by programmers, but rather abstracts the control flow of any standard
programming language equipped with fork and join constructs. A process always starts
from a definition P = def P̃ in x(ṽ), where the parameters of x in P̃ are to be instantiated
by ṽ. The form of process actions P̃ follows global and local types and rely on a func-
tional style to pass values around continuations. Variables x̃ in x(x̃) occurring on the
left-hand side of a process action are binding variables on the right-hand side. Variables
y in request and receive are also binding (e.g. in x(x,z) = z?〈p, l(y)〉.x′(x,y,z), the final
z is bound by z in x(x,z), while y is bound by the input).

A session is initialised by a transition of the form x(x̃) = x〈G〉.x′(ẽ) where G is a
global type. It attributes a global interaction pattern defined in G to the shared channel
a that x gets substituted to. The variables in ẽ are all bound by x̃. After a session ini-
tialisation, participants can accept the session with x(x̃) = x[p](y).x′(ẽ) (as long as x is
substituted by the same share channel a as the initialisation), starting the interaction: the
variables in ẽ are bound by x̃ and by y, which, at run-time, receives the session channel.

The sending action x!〈p, l〈e〉〉 allows in session x to send to p a value e labelled by a
constant l. The reception x?〈p, l(y)〉.x′(ẽ) expects from p a message with a label l. The
message payload is then received in variable y, which binds in x′(ẽ).

x(x̃) = x′(ỹ) | x′′(z̃) represent forking threads (i.e. P | Q): ỹ and z̃ are subsets of x̃.
The conditional (if e then x′(ẽ′) else x′′(ẽ′′)) and the external choices (x′(x̃)& x′′(x̃))
are extensions of the traditional selection and branching actions of session types. The
join action collects parallel threads, while the merge action collects internal and external
choices. Note that external choice, fork, join and merge only allow a restricted use of

3 It is formally defined in [10, 15] and Appendix C.4.

14

bound variables for continuations. x(x̃) = (νa)x′(ax̃) creates a new shared name a. 0 is
an inactive agent. For simplicity, we omit the action of leaving a session.

The process states X are defined from the state variables present in P̃. The network
N is a parallel composition of definition agents, with restrictions of the form (νa)N.

Once a session is running, our operational semantics uses run-time syntax not di-
rectly accessible to the programmer. X | X′ and (νa)X are for example only accessible
at run-time. Session instances are represented by session restriction (νs)P. The message
buffer s : h stores the messages in transit for the session instance s. A session invitation
a[p]〈s〉 invites participant p to start the session s announced on channel a.

A network which only consists of shared name restrictions and parallel composi-
tions of def P̃ in x(~v) is called initial.

Operational Semantics We define the operational semantics for processes and net-
works in Fig. 11. We use the following labels to organise the reduction of processes.

α,β ::= τ | s[p,q]!l〈v〉 | s[p,q]?l〈v〉 | a〈G〉 | a〈p〉[s]

The rules are divided into two parts. The first part corresponds to a transition relation
of the form P̃ ` X α−→X′ representing that a process in a state X can move to state X′
with action α . The second part defines reductions within networks (with unlabelled
transitions N−→ N′). e ↓ v denotes the evaluation of expression e to v.

Fig. 11. Operational Semantics (selected rules)

x[ṽ/x̃] = a ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x〈G〉.x′(ẽ) ` x(ṽ)
a〈G〉−−−→ x′(ṽ′)

[INIT]
x[ṽ/x̃] = a ẽ[ṽ/x̃][s/y] ↓ ṽ′

x(x̃) = x[p](y).x′(ẽ) ` x(ṽ)
a〈s〉[p]−−−−→ x′(ṽ′)

[ACC]

x[ṽ/x̃] = s[q] e[ṽ/x̃] ↓ v ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) ` x(ṽ)
s[q,p]!l〈v〉−−−−−−→ x′(ṽ′)

[SEND]

x[ṽ/x̃] = s[q] ẽ[ṽ/x̃][v/y] ↓ ṽ′

x(x̃)=x?〈p, l(y)〉.x′(ẽ) ` x(ṽ)
s[p,q]?l〈v′〉−−−−−−→x′(ṽ′)

[RCV]
a 6∈ ṽ

x(x̃)=(νa)x′(ax̃) ` x(ṽ) τ−→(νa)x′(aṽ)
[NEW]

e[ṽ/x̃] ↓ true ẽ′[ṽ/x̃] ↓ ṽ′

x(x̃)=if e then x′(ẽ′) else x′′(ẽ′′) ` x(ṽ) τ−→ x′(ṽ′)
[IFT]

P̃,x(x̃) = x′(x̃) & x′′(x̃) ` x′(ṽ) α−→ X
P̃,x(x̃) = x′(x̃) & x′′(x̃) ` x(ṽ) α−→ X

[EXT] P̃ ` X α−→ X′

def P̃ in X α−→ def P̃ in X′
[DEF] P τ−→ P′

P−→ P′
[TAU]

P
s[p,q]!l〈v〉−−−−−−→ P′

P || s : h−→ P′ || s : h · (p,q, l〈v〉)
[PUT] P

s[p,q]?l〈v〉−−−−−−→ P′
P || s : (p,q, l〈v〉) ·h−→ P′ || s : h

[GET]

P
a〈G〉−−−→ P′ p0, . . . ,pk ∈G s 6∈ fn(P′)

P−→ (νs)(P′ || s : ε || a〈s〉[p0] || . . . || a〈s〉[pk])
[INITN] P

a〈s〉[p]−−−−→ P′
P || a〈s〉[p]−→ P′

[ACCN]

Rule [SEND] emits a message from p to q, substituting variables x̃ by ṽ and evaluating
e to v. Rule [RCV] inputs a message and instantiates y to the received value v. Rule [INIT]

initiates a session, while rule [ACC] emits a signal which signifies the process’s readiness
to participate in a session. Rule [IFT] internally selects the first branch with respect to the

15

Fig. 12. Trade Example: Processes

PS = def x(x,y) = x〈GTrade〉.x′(x,y)
x′(x,y) = x[S](z).x0(y,z)
x0(y,z) = z !〈B, Item〈y〉〉.x1(z)

x1(z) = z?〈B,Final(y)〉.x10(z,y)
x10(z,y) = 0 in x(a,“HGG”)

PC = def x(x, i) = x[C](z).x0(i,z)
x5(i,z)+x0(i,z) = x2(i,z)

x2(i,z) = x3(i,z) & x6(i,z)
x3(i,z) = z?〈B,Offer(y)〉.x4(i,z,y)

x4(i,z,y) = z !〈B,Counter〈i〉〉.x5(i+5,z)
x6(i,z) = z?〈B,Result(y)〉.x10(y,z)

x10(y,z) = 0 in x(a,50)

value of e ([IFF] is similarly defined). Rule [NEW] creates a new shared name. Rule [EXT]

is the external choice, which invokes either the left or right state variable, depending on
which label α is received.

Rules [DEF] and [TAU] promote processes to the network level. [INITN] is used in com-
bination with [INIT]. It creates an empty queue s : ε together with invitations for each
participant. Rule [ACCN] consumes an invitation to participate to the session if someone
has been signalled ready (via [ACC]). Other contextual rules are standard (we omit the
structure rules, ≡). We write −→∗ for the multi-step reduction.

We write here an implementation of the Trade example from § 1. The reader can
refer to Fig. 1 and Ex. 3.1 for the global and local types.
In Fig. 12, PS and PC, respectively correspond to the seller S and client C. PS initiates
the session by announcing GTrade on shared name a. According to rule [INITN], it creates a
session name s, a message buffer and invitations for S, B and C. PS then joins the session
as the seller S, the variable z being used to contain the session name. PS proceeds with
x0(y,z) where y is the string “HGG” and z the session name. The execution of x0(y,z)
sends a message Item with payload “HGG” in the message buffer. PC starts in x(a,50)
where a is the shared name and 50 the price it is ready to offer initially. It joins the
session as the client C, gets in variable z the session name s and continues with x0(i,z).
The message Offer is then countered as many times needed with a slowly increased
proposed price.

5 Typing Multiparty Interactions

This section introduces the typing system. There is one main difference with existing
multiparty typing system: to type a process P, we need to gather for every session
the typing constraints of the transitions P̃ in P, keeping track of associations such as
x1 =!〈p, l〈U〉〉.x2. We rely on an effective use of “matching” between local types and
inferred transitions to keep the typing system for initial processes simple.

Environments We use u to denote a shared channel a and its variable x and c to denote
a session channel s[p] or its variable. The grammar of environments are defined as:

Γ ::= /0 | Γ ,u : U ∆ ::= /0 | ∆ ,c : T Σ ::= /0 | Σ ,x : Ũ
Γ is the standard environment which associates variables to sort types and shared names
to global types. ∆ is the session environment which associates channels to session types.
Σ keeps tracking state variable associations. We write Γ ,u : U only if u 6∈ dom(Γ).
Similarly for other variables.

16

Fig. 13. Typing System for Initial State Processes (selected rules)

ỹ : Ũ ` ẽ : Ũ ′ ỹ : Ũ ` x : 〈G〉 ∀i,Ti = T′i]x=x′

` x(ỹz̃) = x〈G〉.x′(ẽz̃)�x : Ũ T̃ [] x′ : Ũ ′ T̃′
[INIT]

ỹ : Ũ ` ẽ : Ũ ′ ỹ : Ũ ` x : 〈G〉 ∀i,Ti = T′i]x=x′ T = G � p
` x(ỹz̃) = x[p](y).x′(ẽz̃y)�x : Ũ T̃ [] x′ : Ũ ′ T̃′T

[REQ]

ỹ : Ũ ` e : U ỹ : Ũ ` ẽ : Ũ ′ Ti = T′i]x=!〈p, l〈U〉〉.x′ ∀ j 6= i,T j = T′j]x=x′

` x(ỹz̃) = zi !〈p, l〈e〉〉.x′(ẽz̃)�x : Ũ T̃ [] x′ : Ũ ′ T̃′
[SEND]

ỹ : Ũ ` ỹ1 : Ũ1 ỹ : Ũ ` ỹ2 : Ũ2 ∀i,Ti = (T1i∪T2i)]x=x1 | x2

` x(ỹz̃) = x1(ỹ1z̃) | x2(ỹ2z̃)�x : Ũ T̃ [] x1 : Ũ1 T̃1,x2 : Ũ2 T̃2
[PAR]

ỹ : Ũ ` ỹ1 : Ũ1 ỹ : Ũ ` ỹ2 : Ũ2 ∀i,Ti = T′i]x1 | x2=x
` x1(ỹ1z̃) | x2(ỹ2z̃) = x(ỹz̃)� x1 : Ũ1 T̃,x2 : Ũ2 T̃ [] x : Ũ T̃′

[JOIN]

` Pi �Σi [] Σ
′
i comp({Σi [] Σ

′
i}i) x0 : Ũ = (∪Σi)\ (∪Σ

′
i) Γ ` ṽ : Ũ

Γ ` def P̃ in x0(ṽ)
[DEF]

Judgements The different judgements that are used are:
Γ ` e : U Expression e has type U under Γ

Γ ` P�Σ [] Σ ′ Left/right variables in P have types Σ /Σ ′ under Γ

Γ ` P Process P is typed under Γ Γ ` N Network N is typed under Γ

Typing Rules We give the selected typing system for processes in Fig. 13. Apart from
inferring local types through constraint gathering, the essence of the typing system is
the same as the original system of [3, 15]. In the rules, ỹ and z̃ correspond to sorts and
session types, respectively.

Rule [INIT] types the initialisation. ỹ should cover x and variables in ẽ appearing in the
right hand side. The type system records that every zi should have type T]x=x′, which
means that we record x=x′ at the head of T (formally defined as: def x=x′, T̃ in x if
T = def T̃ in x′). Rule [REQ] is similar except we record the introduced projected session
type T=G � p. Rule [SEND] records the send type for zi (Ti = x=!〈p, l〈U〉〉.x′) and x= x′
for all other sessions. The rule for the input is symmetric.

Rule [PAR] introduces the parallel composition. The operation (T1∪T2)]x=x1 | x2
is defined as def x=x1 | x2, T̃1∪ T̃2 in x where Ti = def T̃i in xi (we record x=x1 | x2 at
the head of a union of T1 and T2). Rule [JOIN] is a symmetric rule.

In [DEF], we write comp({Σi ; Σ ′i}i) (environments are complete) if (1) there exists
unique x0 ∈ (∪iΣi)\ (∪iΣ

′
i); (2) for all x 6= x0, x appears exactly once in Σi and Σ ′j for

a unique i, j. (3) if Σi(x) = Ũ ; T̃ and Σ ′j(x) = Ũ ′; T̃′, then Ũ = Ũ ′ and T̃ = T̃′. The con-
ditions (1,2) corresponds to (Unambiguity) condition in the well-formed global types
defined in § 2.2, while (3) simply checks the matching of the argument types of each
state variable appears in right Σi and left Σ ′j. Other rules (for delegation, choice, condi-
tion, restriction and networks) are similar or straightforward, following the structure of
terms.

Since checking well-formedness and comp({Σi;Σ ′i}) are decidable in polynomial
time, following the standard method [15, § 4], we have:

17

Fig. 14. Type Transition System, Structure Rules and Environment Communication Rule

def T̃ in x ≡ def T̃ ′ in x (T̃ = T̃ ′) bEQc
def x1 +x2 = x, T̃ in xi ≡ def x1 +x2 = x, T̃ in x (i = 1 or i = 2) bMERGEc

def x1 | x2 = x, T̃ in x1 | x2 ≡ def x1 | x2 = x, T̃ in x bJOINc

def x =!〈p, l〈U〉〉.x′, T̃ in x
!〈p,l〈U〉〉−−−−−→ def x =!〈p, l〈U〉〉.x′, T̃ in x′ bSEND`c

def x =?〈p, l〈U〉〉.x′, T̃ in x
?〈p,l〈U〉〉−−−−−→def x =?〈p, l〈U〉〉.x′, T̃ in x′ bRECV`c

def x = x1⊕x2, T̃ in x τ−→ def x = x1⊕x2, T̃ in xi (i = 1 or i = 2) bCONDc
def T̃ in x1

`−→ def T̃ in x′1
def x = x1 & x2, T̃ in x1

`−→ def x = x1 & x2, T̃ in x′1
bCHOICEc

def T̃ in x1
`−→ def T̃ in x′1

def T̃ in x1 | X2
`−→ def T̃ in x′1 | X2

bPARc
T1

!〈q,l〈U〉〉−−−−−→ T′1 T2
?〈p,l〈U〉〉−−−−−→ T′2

(s[p] : T1,s[q] : T2,∆)−→ (s[p] : T′1,s[q] : T′2,∆)
[COM]

Proposition 5.1 (Decidability). Assuming the new and bound names and variables in
N are annotated by types, type checking of Γ ` N terminates in polynomial time.

Typing for Run-time Processes We have four judgement to type run-time processes:
Γ , P̃ ` X�∆ Γ ` P�∆ Γ `S N�∆ Γ `S s : h�∆

where S denotes the set of session names of queues. We also extend the type T to
def T̃ in X to type states X and message types to type queues [3]. The rest can be
understood without these typing systems, hence we leave them to Appendix E.

6 Properties of Typed Multiparty Session Processes

This section shows that typed processes enjoy the same properties as MSAs defined in
definition 3.3. The correspondence with CFSMs makes the statements of the properties
of processes formally rigorous and eases the proofs. For full proofs, see Appendix F.

6.1 Safety and Boundedness

Let ` range over transition labels for types: ` ::= τ | !〈p, l〈U〉〉 | ?〈p, l〈U〉〉. Figure 14
defines a labelled transition relation between types T `−→T′, defined modulo structure
rules (for join and merge) and type equality. The sending and receiving actions oc-
cur when the state variable x points to sending and receiving types (Rules bSENDlc and
bRECVlc). Others are contextual rules. We also use the labelled transition relation between
environments, denoted by (Γ ,∆) α−→(Γ ′,∆ ′) where the main rule is bCOMc in Fig. 14
which represents the reduction between a message queue and a process at the network
level. Other omitted rules are straightforward.

Lemma 6.1 (Subject Congruence). Suppose Γ , P̃ ` X � ∆ and P̃ ` X ≡ X′. Then
Γ , P̃ ` X′�∆ . Similarly for P and N.

18

The following theorem, which is often called type soundness, states that if a process
(resp. network) emits a label (resp. performs a reduction), then the environment can do
the corresponding action, and the resulting process and the environment match.

Theorem 6.1 (Subject Transition and Reduction).

1. Γ , P̃ ` X�∆ and P̃ ` X α−→X′ imply Γ ′, P̃ ` X′�∆ ′ with (Γ ,∆) α−→(Γ ′,∆ ′).
2. Γ ` P�∆ and P α−→P′ imply Γ ′ ` P′�∆ ′ with (Γ ,∆) α−→(Γ ′,∆ ′).
3. Γ `S N�∆ and N−→ N′ imply Γ `S N′�∆ ′ with ∆ −→∗ ∆ ′.

We also use the following one-to-one correspondence between local state automata and
local types. We write ˜̀−→ for `1−→·· · `n−→. We use the notation `=⇒ for (τ−→)∗ `−→(τ−→)∗ and
similarly for

˜̀
=⇒. The proof is straightforward by the definition in § 3.3.

Theorem 6.2 (CFSMs and Local Types). (G � p)
˜̀

=⇒ iff A(G � p)
˜̀−→.

We say P has a type error if expressions in P contain either a type error for a value
or constant in the standard sense (e.g. (true+ 7)) or a reception error (e.g. the sender
sends a value with label l0 while the receiver does not expect label l0).

Theorem 6.3 (Type Safety). Suppose Γ ` N. For any N′ such that N −→∗ N′, N′ has
no type error.

Proof. Suppose Γ ` N has a type error. Then there are reductions such that N −→∗
(νs)(s : (p,q, l〈v〉) ·h || P1 || · · · || Pn) ||N′ and P j

s[p,q]?〈v〉−−−−−→P j where v does not meet the
specified type. Suppose Γ ` P j �∆ ,s[p] : T j. By Theorem 6.2, T j

?〈q, l〈U〉〉−−−−−→T′j. Since P j
has a type error, Γ 6` v : U , which contradicts Theorem 6.1. ut

Using Theorem 3.2, boundedness is derived as Theorem 6.4.

Theorem 6.4 (Boundedness). Suppose for all occurrences of G in Γ , A({G � pi}1≤i≤n)
with p1, ...,pn ∈G is strongly bounded. Then for all N′ such that Γ `N and N−→∗ N′,
the reachable contents of a given channel buffer is finite.

This result can be extended to other variants such as existential boundedness or K-
boundedness [13] by applying the global buffer analysis on 〈G〉 from [10].

6.2 Advanced Properties in a Single Multiparty Session

We now focus on advanced properties guaranteed when only a single multiparty session
executes. We say N is simple [15, 26] if N0 −→∗ N such that N0 ≡ P1 || · · · || Pn and
Γ ` N0 where each Pi is either an initiator def x0(x) = x〈G〉.x1,x1 = 0 in x0(a) or
an acceptor def x0(x) = x[p](y).x1, P̃ in x0(a) where P̃ does not contain any initiator,
acceptor, name creator, delegation nor catch (sending and receiving session channels as
arguments). This means that, once the session is started, all processes continue within
that session without any interference by other sessions. In a simple network, we can
guarantee the following completeness result (the reverse direction of Theorem 6.1).

19

Theorem 6.5 (Completeness). Below we assume X, P and N are sub-terms of deriva-
tions from a simple network. Then: Γ , P̃`X�∆ and (Γ ,∆) α−→(Γ ′,∆ ′) imply P̃`X α−→X′
with Γ ′, P̃ ` X′�∆ ′. Similarly P and N satisfy the reversed direction of Theorem 6.1.

We say N is a deadlock if all processes are blocked, waiting for messages. Formally N
is a deadlock if there exists N′ such that N −→∗ N′ = (νs)(s : /0 || P′1 || · · · || P′n) || N′′
and for all 1≤ j ≤ n, if P′j

α j−→P′′j then α j = s[p,q]?l〈v〉 (i.e., P′j is an input process).

Theorem 6.6 (Deadlock Freedom). Suppose Γ ` N is simple. Then there is no reduc-
tion such that N−→∗ N′ and N′ is a deadlock.

Proof. Suppose there is a deadlock network N′ such that N−→∗ N′ ≡ (νs)(s : /0 || P1 ||
· · · || Pn) || N′′ and all P j is an input. By Completeness (Theorem 6.5), N′ 6α−→ implies
(s[p1] : T1, · · · ,s[pn] : Tn) 6α−→ where Γ ` P j �∆ ,s[p j] : T j. Since its ({A(G � pi)}i) is
deadlock-free, for all i, Ti = end. This contradicts that N′ is a deadlock. ut

Theorem 6.7. (1) (Progress) Suppose Γ ` N is simple. Then for all N−→∗ N′, either
N′ ≡ 0 or N′ −→N′′. (2) (Liveness) Suppose a : 〈G〉 `N and A({G � pi}1≤i≤n) satisfies
liveness with p1, ...,pn ∈ G. Assume N −→∗ (νs)(s : h || P1 || P2 || · · · || Pn) such that
a : 〈G〉 ` P j � s[p j] : T j. Then there exits a reduction such that N−→∗ 0.

Proof. (1) By Theorem 6.5 with (νs)(s : /0)≡ 0. (2) By Theorems 6.2 and 6.5 with (1).

Thanks to the strong correspondence that typing enforces between processes behaviours
and automata, we have proved that all the good properties enjoyed by MSA generated
by a global type G also hold in the processes typed by the same G.

7 Related Work
The relationship with other ses-
sion types and CFSMs is sum-
marised in the diagram. The out-
side box represents communicat-
ing automata, with the undecid-
able separation between deadlock-
free and deadlocking machines.
Within it, we represent the known
inclusions between session and
CFSMs systems. First, binary
(two party) session types [14] cor-
respond to the set of compati-
ble half-duplex deterministic two-
machine systems without mixed states [13, 25] (compatible means that each send is
matched by a receive, and vice-versa). This is not the case for the MSA generated
from secure session specifications [9], which satisfy strong sequentiality properties and
are multiparty. They can however be shown to be restricted half-duplex in [7, § 4.1.2]
(i.e. at most one queue is non-empty). The original multiparty session types [3, 15],

20

which correspond to our system when parallel composition is disallowed, are a subset
of the natural multiparty extension of half-duplex system [7, § 4.1.2] where each pair of
machines is linked by two buffered channels, one in each direction, such that at most
one is non-empty. Our MSA can have mixed states and are not half-duplex, as shown
in G3 (Ex. 2.1 (3), both Alice and Bob can fill both buffers concurrently). From this
picture are omitted Gouda et al.’s pioneering work [13] and Villard’s extension [18]
of [25] to unreliable systems, which proves that safety properties and boundedness are
still decidable. These works [13, 18, 25] only treat the two-machine case.

Finally, we mention two related works by Castagna et al. [6] and Bultan et al. [1, 2].
The first two papers [1, 6] focus on proving the semantical correspondence between
global and local descriptions. In Castagna et al. [6], global choreographies are described
by a language of types with general fork (∧), choice (∨) and repetition (G)∗ (which rep-
resents a finite loop of zero or more interactions of G). Note that these global types of [6]
use series-parallel syntax trees and are thus limited by the lack of support for general
joins and merges. This prevents many examples, such as the Alternating Bit Protocol
GAB in Ex. 2.1 (7), the Trade example from § 1 and G6 in Ex. 2.1 (6), from being algo-
rithmically projectable (i.e. implementable). In [1], on the other hand, global specifica-
tions are given by a finite state machine with no special support for parallel composition.
In both cases, their systems do not treat the extended causality between sends and re-
ceives (the OO-causality and II-causality at different channels [15]). They also do not
give a practical (language-based) framework, from types to processes to tackle real pro-
grams. In terms of results, [6] proposes well-formedness conditions under which local
types correspond to global types, while [1] describes a sound and complete decision
algorithm for realising (i.e. projecting) a choreography specification. Our work avoid
this theoretical completeness question by using sufficient well-formedness conditions
and by directly giving a global type semantics in terms of local automata. Recently, [2]
extends [1] to tackle the synchronisability problem (equivalent to our Lemma 3.1 (3)).
They however do not go as far as deadlock-freedom, progress and liveness.

When comparing these works with ours, the main differences are: (1) unlike [25]
and ours, [1, 6] only investigate the relationship between global and local specifications,
not from types (contracts) to programs or processes to ensure safety properties; (2)
while the semantical tools are close (formal languages, finite state machines), there are
subtle differences concerning buffer-boundedness [1, 2], finite recursion [6] and causal-
ity [1, 2, 6]; (3) Bultan et al. [1, 2] do not propose any global description language, while
Castagna et al.’s language [6] is not rich enough compared to ours; and (4) the algorith-
mic projectability in [6] is more limited than ours, and [1, 2] only propose exponential
decision results, limiting their applicability.

Message sequence graphs (MSGs) In terms of expressiveness, a very comparable sys-
tem is the extension of Message sequence charts (MSCs) to Message Sequence Graphs
(MSGs). MSGs are finite transition systems where each state embeds a single MSC.
Many variants of MSGs are investigated in the literature [12] in order to provide ef-
ficient conditions for verification and implementability, i.e. projectability to CFSMs.
Some of these conditions in MSGs are similar to ours: for example, our local choice
condition corresponds to the local choice condition with additional data of [12, Def. 2].
A detailed comparison between MSGs and global types is given in [6, § 7.1].

21

In general MSGs are however incomparable with our framework because MSGs’
transition system is global and non-deterministic. We aim our global type language to
be more compact, precise and suitable for programming. For example, extending the
Alternating Bit Protocol GAB to three parties can be easily done in our system (G9 in
Fig. 15 in Appendix B.1), while it can only be written in a complex extension of MSGs,
called Compositional MSGs (CMSGs). The main benefit of our type-based approach is
that there is no gap between specifications and programs: we can instantly check the
properties of programs by static type-checking. More investigation on global types and
MSGs properties would however bring mutual benefits by identifying the expressive-
ness differences.

8 Conclusion and Future Work

We have introduced a new framework of multiparty session types which is tightly linked
to CFSMs, and showed that a new class of CFSMs, that we called multiparty session
automata (MSA), generated from global types, automatically satisfy safety and liveness
properties, extending the results in [13] to multiple machines. We use MSA to define
and prove precise safety and liveness properties for well-typed mobile processes. The
syntax of our session types and processes brings expressiveness to new levels (general
fork, choice, merging and joining) that have not been reached by existing systems [3, 6,
15], while keeping a polynomial tool chain. Our general choice is already included into
Scribble 1.0 [22], an industrial language to describe application-level protocols among
communicating systems based on the multiparty session type theory.

Future work include finding a characterisation of MSA that is independent of ses-
sion types, investigating model checking for MSA to justify typed bisimulations [17],
relating MSA with models of true concurrency, including Mazurkiewicz traces, extend-
ing MSA to parameterisation [26], multiroles [11] and multiparty contracts [18, 25].
Acknowledgments We are grateful to the anonymous reviewers, Kohei Honda, Ray-
mond Hu, Étienne Lozes, Rumyana Neykova and Jules Villard for their helpful com-
ments. This work was supported by EPSRC EP/F003757/01 and G015635/01.

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL’12. ACM
(2012), to appear

2. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asynchonously com-
municating systems. In: VMCAI’12. LNCS, Springer (2012)

3. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions. In: CON-
CUR. LNCS, vol. 5201, pp. 418–433 (2008)

4. Business Process Model and Notation, http://www.bpmn.org
5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30, 323–342

(April 1983)
6. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party ses-

sions. In: FMOODS/FORTE. LNCS, vol. 6722, pp. 1–28 (2011)
7. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput.

202(2), 166–190 (2005)

22

8. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical Computer
Science 147(1-2), 117–136 (1995)

9. Corin, R., Deniélou, P.M., Fournet, C., Bhargavan, K., Leifer, J.: Secure implementations for
typed session abstractions. In: CSF. pp. 170–186 (2007)

10. Deniélou, P.M., Yoshida, N.: Buffered communication analysis in distributed multiparty ses-
sions. In: CONCUR’10. LNCS, vol. 6269, pp. 343–357. Springer (2010)

11. Deniélou, P.M., Yoshida, N.: Dynamic multirole session types. In: POPL. pp. 435–446. ACM
(2011), full version, Prototype at http://www.doc.ic.ac.uk/˜pmalo/dynamic

12. Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Lectures on Concurrency
and Petri Nets. LNCS, vol. 3098, pp. 537–558 (2004)

13. Gouda, M., Manning, E., Yu, Y.: On the progress of communication between two finite state
machines. Information and Control. 63, 200–216 (1984)

14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for struc-
tured communication-based programming. In: ESOP’98. LNCS, vol. 1381, pp. 22–138.
Springer (1998)

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL’08.
pp. 273–284. ACM (2008)

16. Jones, N., Landweber, L., Edmund Lien, Y.: Complexity of some problems in petri nets.
Theoretical Computer Science 4(3), 277–299 (1977)

17. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In: FMOODS/-
FORTE. LNCS, vol. 6722, pp. 228–243 (2011)

18. Lozes, E., Villard, J.: Reliable contracts for unreliable half-duplex communications. In: WS-
FM. Springer (2011), to appear

19. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe Parallel Programming with Session
Java. In: COORDINATION. LNCS, vol. 6721, pp. 110–126. Springer (2011)

20. Ocean Observatories Initiative (OOI), http://www.oceanobservatories.org/
21. Savara JBoss Project, http://www.jboss.org/savara
22. Scribble JBoss Project, http://www.jboss.org/scribble
23. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient session type guided

distributed interaction. In: COORDINATION. LNCS, vol. 6116, pp. 152–167 (2010)
24. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bharagavan, K., Yang, J.: Secure distributed

programming with value-dependent types. In: ICFP. pp. 266–278. ACM (2011)
25. Villard, J.: Heaps and Hops. Ph.D. thesis, ENS Cachan (2011)
26. Yoshida, N., Deniélou, P.M., Bejleri, A., Hu, R.: Parameterised multiparty session types. In:

FoSSaCs. LNCS, vol. 6014, pp. 128–145 (2010)

23

Table of Contents

Multiparty Session Types Meet Communicating Automata . 1
Pierre-Malo Deniélou and Nobuko Yoshida

1 Introduction . 1
2 Generalised Multiparty Sessions . 4

2.1 Global Types for Generalised Multiparty Sessions . 4
2.2 Well-formed Global Types . 5

3 Multiparty Session Automata (MSA) and their Properties . 8
3.1 Local Types and the Projection Algorithm . 8
3.2 Communicating Finite State Machines . 9
3.3 Multiparty session automata (MSA) . 11
3.4 Properties of MSAs . 13

4 General Multiparty Session Processes . 13
5 Typing Multiparty Interactions . 16
6 Properties of Typed Multiparty Session Processes . 18

6.1 Safety and Boundedness . 18
6.2 Advanced Properties in a Single Multiparty Session . 19

7 Related Work . 20
8 Conclusion and Future Work . 22
A Implementation . 25
B Appendix for Section 2 . 25

B.1 Additional Global Type Examples . 25
B.2 Sanity Condition . 26
B.3 Local Choice Condition . 28
B.4 Linearity Condition . 29

C Appendix for Section 3 . 30
C.1 Well-formedness for Local Types . 30
C.2 Congruence Rules for Local Types . 31
C.3 From Global Types to Global State Automata . 31
C.4 Causal Ordering in Global Types . 32
C.5 Global State Automata Properties . 33
C.6 Equivalence between Global State Automata and MSA . 38
C.7 Proofs for Properties of MSA. 38

D Appendix for Section 4 . 39
D.1 Additional Process Examples . 39
D.2 Structure Congruence Rules . 39
D.3 Omitted Operational Semantics . 39

E Appendix for Section 5 . 40
E.1 Operators in figure 13 . 40
E.2 Omitted Rules from Fig. 13 . 40
E.3 Explanations of Typing Rules . 40
E.4 Typing Run-Time Processes . 41

F Appendix for Section 6 . 44
F.1 Transition Rules between Environments . 44
F.2 Proofs . 44

Appendix

A Implementation

We have implemented the session type framework described in this paper. We use gen-
eralised multiparty session types as an internal representation (with a friendlier user
syntax with fork, join, choice and merge) and use the algorithms described here to
check for well-formedness. For the typing system part, we use a technique developed
in [9]. We generate for each endpoint a typed API and rely on the Ocaml typing system
to verify user’s session conformance.

Our general choice is already included into Scribble 1.0 [22], a language to describe
application-level protocols among communicating systems based on the multiparty ses-
sion type theory. In another application, we use MSAs for run-time safety enforcement
for large-scale, cross-language distributed applications developed in [20]. We gener-
ate MSAs against protocol use-case [20] and use them for the dynamic monitoring of
incoming and outgoing messages of each end-point. Since MSAs specify all traces,
monitors can locally validate every message efficiently with a small memory footprint.

B Appendix for Section 2

In this appendix section, we start by some additional global type examples, numbered
8 to 10, followed by details about the three well-formedness conditions.

B.1 Additional Global Type Examples

In figure 15, we give several additional global type examples that illustrate some par-
ticular features that were not developed in the main sections.

8. This global type illustrates two things. First, it shows a simple example of the use
of forking followed by immediate joining. This behaviour is always local, thanks
to well-formedness conditions, and, therefore, at process level can be simply and
efficiently implemented.
Second, the traces represented by this global type are not easily representable by
syntax representations based on trees. The possible traces of G8 are αγβδ , βαγδ ,
αβγδ , βαδγ and αβδγ . It’s easy to write with a standard syntax a representation
for the relation between messages α , β and δ : (α | β);δ ; but γ should always
follow α without being linked with β or δ . Only a graph-like syntax can represent
that set of traces without introducing a choice-based enumeration which breaks
determinism and implementability.

9. This global type represent the extension of the Alternating-Bit protocol to three
messages. As we can see the global type only linearly increases in size, while the
CFSM it represents double its number of states.

10. This global type follows the shape of the Alternating bit protocol, but replacing
all forks by choices and joins by merges. Such a transformation preserves well-
formedness global type. The inverse is not true.

25

Fig. 15. Examples of Global Types (2)

8.

G8 = def x0 = x1 | x2
x1 = A→ B : α〈U〉;x3
x2 = A→ B : β 〈U〉;x4
x3 = x5 | x6

x4 | x5 = x7
x6 = A→ B : γ〈U〉;x8
x7 = A→ B : δ 〈U〉;x9

x8 | x9 = x10
x10 = end in x0

9.

G9 = def x0 = x1 | x2
x1 = x3 | x4

x2 +x5 = x6
x3 +x7 = x8
x4 +x9 = x10

x6 = Alice→ Bob : Msg1〈string〉;x11
x11 = x12 | x13
x13 = Bob→ Alice : Ack1〈unit〉;x14

x12 | x8 = x15
x15 = Alice→ Bob : Msg2〈string〉;x16
x16 = x17 | x18
x17 = Bob→ Alice : Ack2〈unit〉;x7

x18 | x10 = x19
x19 = Alice→ Bob : Msg3〈string〉;x20
x20 = x21 | x22
x21 = Bob→ Alice : Ack3〈unit〉;x9

x22 | x14 = x5 in x0

10.

G10 = def x0 = x1 +x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 +x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 +x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 +x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 +x14 = x3 in x0

B.2 Sanity Condition

As the (Unambiguity), (Unique start) and (Unique end) are trivial, we do not provide
additional details. We therefore focus our explanations on the (Thread correctness) con-
dition.

26

Motivation The thread correctness condition aims at verifying some graph properties
of the global type. This first to be ensured is connexity: each transition can be executable
from the initial state. The second property is the ability to reach end: it is essential to
achieve the liveness property. The third property that is checked is that global types
should only join states that are always occurring concurrently: this prevents deadlocks.

Petri net representation We state well-threadedness as a Petri net property. We there-
fore first define how global types can be seen as a special subclass of free-choice Petri
nets.

Definition B.1 (Petri net representation). Given a global type G = def G̃ in x0, we
define the Petri net P(G) by:

– Each state variable x ∈ G̃ is a place in P(G).
– All the places are initially empty, except x0, which initially has one token.
– Transitions in G̃ are translated according to their kind:
• If x = p→ p′ : l〈U〉;x′ ∈ G̃ then their is a transition in P(G), whose unique

input arc comes from x and whose unique output arc goes to x′.
• If x1 = x2 | x3 ∈ G̃ then there is a transition in P(G), whose unique input arc

comes from x1 and whose two outputs arcs go to x2 and x3.
• If x1 = x2 + x3 ∈ G̃ then there are two transitions in P(G), that each have an

input arc from x1 and that respectively have an output arc to x2 and x3.
• If x1 + x2 = x3 ∈ G̃ then there are two transitions in P(G), that respectively

have an input arc from x1 and x2 and that both have an output arc to x3.
• If x1 | x2 = x3 ∈ G̃ then there is a transition in P(G), whose two input arcs

respectively come from x1 and x2 and whose unique output arc goes to x3.

By construction, a global type G gives a free-choice Petri net P(G).

Theoretical well-threadedness We state well-threadedness as a Petri net property.

Definition B.2 (Theoretical well-threadedness). A global type G = def G̃ in x0 satis-
fies the well-threadedness condition if P(G) is:

1. weakly-connected, and
2. safe (i.e. 1-bounded), and
3. deadlock-free, and
4. if a transition x = end is in G̃, then the marking where all places are empty except

for x with one token, is reachable.

Well-threadedness and polynomial verification algorithm We define well-threadedness
by a polynomial verification algorithm. It relies on the Petri net connection of Def. B.1.

We call a Petri-net an ST-system if it is an S-system or a T-systems, or, recursively,
if, by replacing a S-system or T-system subnet that has a single entry and a single exit
by a single transition, we get a ST-system.

Definition B.3 (Well-threadedness). A global type G = def G̃ in x0 is said to be well-
threaded if, once applied:

27

Fig. 16. Thread Correctness Reduction on global types

G̃,x = x′ −→ G̃[x/x′] [SUB]

G̃,x = p→ p′ : l〈U〉;x′ −→ G̃,x = x′ [TRANS]

G̃,x1 = x2 | x3,x2 | x3 = x4 −→ G̃,x1 = x4 [PAR]

G̃,x1 = x2 +x3,x2 +x3 = x4 −→ G̃,x1 = x4 [BRA]

G̃,x1 +x2 = x3,x3 = x4 +x2 −→ G̃,x1 = x4 [REC]

– the rewriting rules of Fig. 16, followed by
– the transformation into a Petri net of Def. B.1,

the resulting Petri net is an ST-system that satisfies theoretical well-threadedness.

Each of these actions is polynomial, as S-systems and T-systems are well-known
polynomial subclasses of Petri nets (S-systems correspond to global types without fork
and join; T-systems correspond to global types without choice).

Finding a polynomial algorithm which checks exactly the theoretical well-threadedness
properties is an open problem. Existing results show that for general free-choice Petri
nets, checking 1-boundedness is PSPACE-complete [16]. Then, for 1-bounded free-
choice Petri nets, deadlock-freedom is NP-complete [8]. For 1-bounded Petri nets, it is
also known that reachability is PSPACE-complete [8]. We however believe that global
types represent a smaller class of Petri nets with polynomial time properties. The solu-
tion presented here is to use an algorithm which works polynomially, but does not cover
all theoretical well-threaded global types.

B.3 Local Choice Condition

We list here some omitted definitions and examples from the main section.

Active Sender The active sender computation is not as much a counting algorithm
as a verification method that checks whether a given choice has a unique (i.e. local)
responsible participant. In particular, the deduction rules gather the active senders on
each branch and restrict it to be a singleton p.

Local Choice Example (Local choice) is essential for the consistency of the distributed
interaction with respect to choice.

Consider the following incorrect global type:

G¬ch.a. = def x0 = x1 +x3
x1 = Alice→ Bob : Item〈string〉;x2
x2 = Bob→ Dave : Book〈string〉;x4
x3 = Carol→ Bob : Film〈string〉;x5

x4 +x5 = x6
x6 = end in x0

This global type is incorrect because both Alice and Carol are supposed to make a
local choice between Item and Film (prevented by ASend(G̃¬ch.a.)(x0)). Even if Alice

28

Fig. 17. Active Sender Computation

x = end ∈ G̃
G̃ ` x : x̃1, p̃1 [] x : x̃2, p̃2

x1 = end ∈ G̃ x2 ∈ x̃2
G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x1 ∈ x̃1 x2 ∈ x̃2
G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x1 +x2 = x ∈ G̃
G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

(x1 | x = x′ ∈ G̃∨x | x1 = x′ ∈ G̃) G̃ ` x′ : x̃1, p̃1 [] x2 : x̃2, p̃2

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

(x1 +x = x′ ∈ G̃∨x+x1 = x′ ∈ G̃) G̃ ` x′ : x̃1, p̃1 [] x2 : x̃2, p̃2

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x1 = x | x′ ∈ G̃ G̃ ` x : xx̃1, p̃1 [] x2 : x̃2, p̃2 G̃ ` x′ : xx̃1, p̃1 [] x2 : x̃2, p̃2

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x1 = x+x′ ∈ G̃ G̃ ` x : xx̃1, p̃1 [] x2 : x̃2, p̃2 G̃ ` x′ : xx̃1, p̃1 [] x2 : x̃2, p̃2

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x1 = p→ p′ : l〈U〉;x′1 ∈ G̃ p ∈ p̃1 G̃ ` x′1 : xx̃1,p
′p̃1 [] x2 : x̃2, p̃2

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

G̃ ` x2 : x̃2, p̃2 [] x1 : x̃1, p̃1

G̃ ` x1 : x̃1, p̃1 [] x2 : x̃2, p̃2

x = x1 +x2 ∈ G̃ G̃ ` x1 : /0,p [] x2 : /0,p
ASend(G̃)(x) = p

were to send message Film, it forgets to inform Dave of the choice, which may result
in him waiting forever for a message Book that will never come (it is prevented by the
condition Rcv(G̃¬ch.a.)(x1) 6= Rcv(G̃¬ch.a.)(x3)). Note that G5 satisfies the local choice
property.

The following incorrect examples illustrates how local choice can also prevents two
identical labels from being in the two branches of the same choice (it confuses Bob):

G¬lin = def x0 = x1 +x3
x1 = Alice→ Bob : Film〈string〉;x2
x2 = Bob→ Alice : Book〈string〉;x4
x3 = Alice→ Bob : Film〈string〉;x5

x4 +x5 = x6
x6 = end in x0

B.4 Linearity Condition

The linearity condition is enforced by comparing the results of the Lin(G̃)(x1) and
Lin(G̃)(x2) whenever a forking transition x = x1 | x2 is in G̃. The Lin function is defined
in figure 18.

The Lin function works in a similar way on message labels as the Rcv function
on message receivers (linearity is to forks what choice awareness is to choice) except
that the Lin function also collects joining points in order to establish which labelled
message are possibly conflicting. As with Rcv, the equality Lin(G̃)(x1) = Lin(G̃)(x2)

29

Fig. 18. Linearity Computation (up to permutation of | and +)

Lin(G̃)(x) = Lin(G̃, /0, /0)(x) (remembers merges and joins)

Lin(G̃, x̃m, x̃ j)(x) = /0 if x+x′ = x′′ ∈ G̃∧x′′ ∈ x̃ or x = end ∈ G̃

Lin(G̃, x̃m, x̃ j)(x) = {pp′ : l : x̃ j}∪Lin(G̃, x̃m, x̃ j)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ /∈ p̃
Lin(G̃, x̃m, x̃ j)(x) = Lin(G̃, x̃m, x̃ j)(x′)∪Lin(G̃, x̃m, x̃ j)(x′′) if x = x′+x′′ ∈ G̃

Lin(G̃, x̃m, x̃ j)(x) = Lin(G̃, x̃m, x̃ j)(x′)∪Lin(G̃, x̃m, x̃ j)(x′′) if x = x′ | x′′ ∈ G̃

Lin(G̃, x̃m, x̃ j)(x) = Lin(G̃, x̃mx′′, x̃ j)(x′′) if x′+x = x′′ ∈ G̃∧x′′ /∈ x̃
Lin(G̃, x̃m, x̃ j)(x) = Lin(G̃, x̃m, x̃ jx′′)(x′′) if x′ | x = x′′ ∈ G̃

holds if ∀(pp′ : l1 : x̃1) ∈ Lin(G̃)(x1),∀(pp′ : l2 : x̃2) ∈ Lin(G̃)(x2), l1 6= l2∨ x̃1, x̃2 share
a non-null suffix.

C Appendix for Section 3

C.1 Well-formedness for Local Types

Fig. 19. Local Thread Collection Rules

χ ≡ χ0 χ0 −→T̃ χ
′
0 χ

′
0 ≡ χ

′

χ −→T̃ χ
′

x = x′ ∈ T̃
χ[x]−→T̃ χ[x′]

x =!〈p, l〈U〉〉.x′ ∈ T̃
χ[x]−→T̃ χ[x′]

x = x1 | x2 ∈ T̃
χ[x]−→T̃ χ[x1 | x2]

x1 | x2 = x ∈ T̃
χ[x1 | x2]−→T̃ χ[x]

x = x1⊕x2 ∈ T̃
χ[x]−→T̃ χ[x1 +x2]

x1 +x2 = x ∈ T̃
χ[x1 +x2]−→T̃ χ[x]

x1 +x = x2, x′1 = x′⊕x′2 ∈ T̃ χ[x2]−→∗T̃ χ
′[x′1] χ

′[x′2]−→∗T̃ χ[x1]

χ[x]−→T̃ χ
′[x′]

x1 +x = x2, x′1 = x′2⊕x′ ∈ T̃ χ[x2]−→∗T̃ χ
′[x′1] χ

′[x′2]−→∗T̃ χ[x1]

χ[x]−→T̃ χ
′[x′]

x+x1 = x2, x′1 = x′⊕x′2 ∈ T̃ χ[x2]−→∗T̃ χ
′[x′1] χ

′[x′2]−→∗T̃ χ[x1]

χ[x]−→T̃ χ
′[x′]

x+x1 = x2, x′1 = x′2⊕x′ ∈ T̃ χ[x2]−→∗T̃ χ
′[x′1] χ

′[x′2]−→∗T̃ χ[x1]

χ[x]−→T̃ χ
′[x′]

x = end ∈ T̃
T̃ ` x�ok

x = end 6∈ T̃ {xi +x′i = x′′i }0<i≤n ⊂ T̃ T[x′′1 , . . . ,x
′′
n]−→∗T̃ T[x′1, . . . ,x

′
n]

T̃ ` T[x1, . . . ,xn]�ok

x0 −→∗T̃ χ T̃ ` χ �ok

def T̃ in x0 �ok

The rules for the external choice and receive are defined as the internal choice and send.

We first define the well-formed local types in figure 19. Well-formedness conditions
for local types are similarly defined as the ones for global types, including inductive

30

rules for thread collections. Definitions for local versions of χ and T are similar to their
global counterparts.

Proposition C.1 (Well-formedness). If G is well-formed, then the projected types {G �
p}i are well-formed.

C.2 Congruence Rules for Local Types

For local types of the form T = def T̃ in x0, we define in figure 20 a congruent relation
≡ over T̃ .

Fig. 20. Local Type Congruence (up to commutativity of | and +)

T̃ ,x = x′ ≡ T̃ [x/x′]
x1 = x2⊕x3,x2 +x3 = x4 ≡ x1 = x4
x1 = x2 & x3,x2 +x3 = x4 ≡ x1 = x4
x1 +x2 = x3,x3 = x2 & x4 ≡ x1 = x4

x1 = x2 | x3,x2 | x3 = x4 ≡ x1 = x4

It eliminates the indirections and locally irrelevant choices, and removes the unused
local threads that can be created by projection. It also eases type-checking by allowing
the projected types to be slightly different from the local types that can be inferred from
processes.

C.3 From Global Types to Global State Automata

This subsection defines the global state automata which are used as the intermediate
automata for the proofs in the main section in § 3.

We can represent the sequences of actions that a global type specifies as a com-
municating state machine. This allows to interpret some well-formedness conditions of
global types as standard properties of communicating finite state machines.

We write X(G) the set of well-formed states built from the recursion variables of a
given global type G. We define local state contexts in a standard way.

Definition C.1 (Global State Automaton). We start from a global type G= def G̃ in x0
and define the automaton A(G) = (Q,C,q0,A,δ) in the following way:

– A is the set of {l ∈ T}
– Q is defined as a subset of (X(G))p× (A∗)p(p−1), with p the number of participants

in G.
We write, for q ∈ Q, q.p to designate the component Xp of q at p’s position, and
q.pq for the content of the channel between p and q. We use the notation q[p := X]
to represent a state q′ for which, ∀p′ 6= p,q′.p′ = q.p′ and q′.p = X. We similarly
define q[pp′ := ω] for ω ∈ A∗.
Q is defined up to an equivalence relation on local states ≡G̃ defined in figure 21
and by q≡G̃ q[p := X] if p ` q.p≡G̃ X.

31

– C = {pq | p,q ∈ G}
– q0 = (x0, . . . ,x0)
– δ is defined by:
• (q,(pp′!l),q′) ∈ δ if x = p→ p′ : l〈U〉.x′ ∈ G and q.p = X[x] and q.pp′ = ω

and q′.p= X[x′] and q′.pp′ = ω · l and all the other components of q and q′ are
identical.

• (q,(pp′?l),q′)∈ δ if x = p→ p′ : l〈U〉.x′ ∈G and q.pp′ = l ·ω and q.p′ = X′[x]
and q′.p′ = X′[x′] and q′.pp′ = ω and all the other components of q and q′ are
identical.

Fig. 21. Local State Equivalence for Global State Automata

p ` X | X′ ≡G̃ X′ | X p ` X | (X′ | X′′)≡G̃ (X | X′) | X′′

x = p′→ p′′ : l〈U〉.x′ ∈ G̃ p 6∈ {p′,p′′}
p ` X[x]≡G̃ X[x′]

x = x′ | x′′ ∈ G̃
p ` X[x]≡G̃ X[x′ | x′′]

x | x′ = x′′ ∈ G̃
p ` X[x | x′]≡G̃ X[x′′]

x = x′+x′′ ∈ G̃
p ` X[x]≡G̃ X[x′]

x = x′+x′′ ∈ G̃
p ` X[x]≡G̃ X[x′′]

x+x′ = x′′ ∈ G̃
p ` X[x]≡G̃ X[x′′]

x+x′ = x′′ ∈ G̃
p ` X[x′]≡G̃ X[x′′]

C.4 Causal Ordering in Global Types

Now that both local and global automata have been defined, we need some reasoning
methods to link their behaviour to the global and local types.

Causal Ordering We write x <G̃ x′ if x ∈ fvL(Gi) and x′ ∈ fvR(Gi) for some Gi ∈ G̃,
i.e. x appears on the left and x′ on the right of a single transition Gi. For example,
x <G̃ x′ if x = p→ p′ : l〈U〉;x′ ∈ G̃, and x <G̃ x′ and x <G̃ x′′ if x = x′ | x′′ ∈ G̃ or
x = x′+x′′ ∈ G̃. Set <+

G̃
as the transitive closure of <G̃. The relation <+

G̃
is not an order

because of recursion.
We say x0 and x1 are consecutive (written x0 ≺G̃ x1) if x0 = p0→ p′0 : l0〈U0〉;x′0 ∈ G̃

and x1 = p1→ p′1 : l1〈U1〉;x′1 ∈ G̃ such that x0 <
+

G̃
x1 and if there is no x2 = p2→ p′2 :

l2〈U2〉;x′2 ∈ G̃ such that x0 <
+

G̃
x2 and x2 <

+

G̃
x1.

We denote by x1 ≺T̃ x2 the same consecutiveness relation adapted to local types (x1
and x2 then correspond to sending or receiving transitions).

Executions Before proceeding, we need to elaborate on the definition of stable-outputs
executions. We use the term stable-outputs sequence (SOS) execution to refer to an
execution ϕ that is such that ϕ = ϕ1 . . .ϕn where all ϕ1,. . . ,ϕn are stable-outputs.

32

An execution s0
ϕ−→sn in A(G) is said to be globally ordered if, for any transition t

such that ϕ = ϕ0tϕ1, either t is of the form pq!l, with corresponding global transition
x1 = p→ q : l1〈U1〉;x′1 ∈ G̃, and there exists in ϕ0 an action of the form p′q′?l′, with
corresponding global transition x2 = p′→ q′ : l′〈U ′〉;x′ ∈ G̃ such that x2 ≺G̃ x1; or t is
of the form pq?l and ϕ0 is of the form ϕ ′0t ′ with t ′ = pq!l.

Note that globally ordered executions always start from the initial state and are thus
1-buffer.

Transition Causality We now define causality ordering between transitions in global
automata. For any reachable state s of a global automata A(G) such that s t1−→s1

ϕ−→s2
t2−→s3,

we say that t2 depends on t1, or t1 causes t2, written t1 / t2 if either:

– (OO) t1 = pq1!l1 and t2 = pq2!l2 and x1 = p→ q1 : l1〈U1〉;x′1 ∈ G̃ and x2 = p→
q2 : l2〈U2〉;x′2 ∈ G̃ and x1 ≺T̃ x2 (with T̃ = G̃ � p) and s.p= X[x1];

– (II) t1 = p1q?l1 and t2 = p2q?l2 and x1 = p1→ q : l1〈U1〉;x′1 ∈ G̃ and x2 = p2→ q :
l2〈U2〉;x′2 ∈ G̃ and x1 ≺T̃ x2 (with T̃ = G̃ � q) and s.q= X[x1];

– (IO) t1 = p1q?l1 and t2 = qp2!l2 and x1 = p1 → q : l1〈U1〉;x′1 ∈ G̃ and x2 = q→
p2 : l2〈U2〉;x′2 ∈ G̃ and x1 ≺T̃ x2 (with T̃ = G̃ � q) and s.q= X[x1];

– (OI) t1 = pq1!l1 and t2 = q2p?l2 and x1 = p→ q1 : l1〈U1〉;x′1 ∈ G̃ and x2 = q2→
p : l2〈U2〉;x′2 ∈ G̃ and x1 ≺T̃ x2 (with T̃ = G̃ � q) and s.q= X[x1];

– (Comm) t1 = pq!l and t2 = pq?l and x1 = p→ q : l1〈U1〉;x′1 ∈ G̃ and s.p = X[x1]
and s.q= X′[x1];

Note that the (OO), (II), (IO) and (OI) causalities correspond to local ordering, while
the (Comm) causality is the result of communication. We write t1 ./ t2 if t1 / t2 does not
hold.

We say that an execution ϕ is a causal chain if, for any t ∈ ϕ , there exists a t ′ ∈ ϕ

and ϕ0,ϕ1,ϕ2 such that ϕ = ϕ0t ′ϕ1tϕ2 and t ′ / t.
Finally, we characterise an SOS execution ϕ as being a SOS causal chain if, for any

t ∈ ϕ , there exists a t ′ ∈ ϕ and ϕ0,ϕ1,ϕ2 such that ϕ = ϕ0t ′ϕ1tϕ2 and t ′ / t, or t is an
send and t is immediately followed in ϕ by the corresponding receive.

C.5 Global State Automata Properties

We now state some essential properties of global state automata.

Lemma C.1 (Commutativity). For any well-formed global type G, in the MSA A(G),
if there is a reachable state s such that s t1−→s1

t2−→s2 and t1 ./ t2, then there exists a state
s′1 such that s t2−→s′1

t1−→s2.

Proof. By case analysis on the transitions t1 and t2.

Proposition C.2. For any well-formed global type G = def G̃ in x0, if X1[x] ≡G̃ X2[x]
and x = p→ p′ : l〈U〉.x′, then X′1[x

′] ≡G̃ X′2[x
′] for all X′1,X

′
2 such that X1 ≡G̃ X′1 and

X2 ≡G̃ X′2.

33

Proof. By definition of ≡.

Proposition C.3 (Determinism). If G is well-formed, then A(G) is deterministic.

Proof. Suppose G = def G̃ in x0 is well-formed. We assume by contradiction that there
exists a global state q ∈ Q from which there are two transitions (q,(pp′!l),q′′1) and
(q,(pp′!l),q′′2) with q′′1 6≡G̃ q′′2 .

From the linearity condition and the definition of A(G), we know that there is a
unique element of G̃ of the form x = p→ p′ : l〈U〉.x′. Then by definition of A(G),
there exists q1,q2,q′1,q

′
2 such that q1.p= X1[x], q2.p= X2[x], q1.pp

′ = ω1, q2.pp
′ = ω2,

q′1 = q1[p := X1[x′],pp′ := ω1 · l], q′2 = q2[p := X2[x′],pp′ := ω2 · l] and q≡G̃ q1 ≡G̃ q2
and q′′1 ≡G̃ q′1 and q′′2 ≡G̃ q′2.

First, by definition of≡G̃, we have ω1 = ω2. Second, by well-formedness, we know
that X1 and X2 are contexts which do not contain either x or x′. Then by Proposition C.2,
X1[x′]≡G̃ X2[x′]. Hence it contradicts the assumption q′′1 6≡G̃ q′′2 .

Proposition C.4 (Choice Awareness). If G is well-formed, then A(G) is choice aware.

Proof. By definition of well-formedness of G.

Proposition C.5 (Correct Ending). If G = def G̃ in x0 is well-formed and if there
is a transition xend = end ∈ G̃, then A(G) does not have any transition from q =
(xend, . . .xend,ε, . . . ,ε).

Proof. There exists a unique xend = end ∈ G̃. Suppose there is a transition from the
end state qend = (xend, . . . ,xend,ε, . . . ,ε). It means there exists a transition x = p→ p′ :
l〈U〉.x′ ∈ G̃ for which there is a q′ ≡ qend such that q.p= X[x]. All the equivalence rules
have to be read from right to left with the important fact that no message rule implying
p can be traversed. Only the rule x1 = x2 & x3 and x1 = x2⊕x3 allows to be equivalent
to a recursion variable that is on the left-hand side of a rule. But the (choice awareness
rule) implies that active senders on both branches of the choice must be identical, which
contradicts the fact that p is able to send a message.

Lemma C.2 (Parallel). Assume G is well-formed. Suppose s ∈ RS(A(G)) and s t1−→s1
and s t2−→s2.

1. If t1 and t2 are both inputs at q, then the state of q in s is X[x1 | x2] with xi = pi→
q : li〈Ui〉.x′i ∈G (i = 1,2).

2. If t1 is an input at q, and t2 is an output to q, then the state of q in s is X[x1 | x2] with
x1 = p1→ q : l1〈U1〉.x′1 ∈G and x2 = q→ q2 : l2〈U2〉.x′2 ∈G.

Proof. For (1), by definition of δ of A(G), there is a state X such that X ≡ X1[x1] ≡
X2[x2]. By assumption, we have t1 ./ t2. The statement means that we prove X≡ X′[x1 |
x2] if t1 ./ t2 and there is no case X≡ X′[x1 +x2].

We prove by induction on the number of applications of≡ (the size of the≡ proof).
The base case is obvious by X= X1[x1] = X2[x2] = X′[x1 | x2].
For inductive case, suppose X1[x1]≡ X2[x2]. We apply the ≡ rule once to X1[x1].
Then X1[x1]≡ X1[x3 +x4] with x1 = x3 +x4 ∈G or x3 +x4 = x1 ∈G. In this case,

X1 = x2 | X′′ for some X′′.

34

It is obvious that there is no case such that X ≡ X′[x′′1 + x′′2] with x′′1 <+

G̃
x1 and

x′′2 <+

G̃
x2 because if so, only one of ti can be executed from s, which contradicts to the

assumption.
If we apply the fifth rule to x1 | x2 in X′[x1 | x2] to obtain X′[x′], then we apply back to

obtain X′[x1 | x2]. If we apply other rules to X1[x1], then obviously X1 = x2 | X′′. Applying
this repeatedly, we can check if X[x1 | x2]≡ X′1[x

′
1 | x2] and X[x1 | x2]≡ X′2[x1 | x′2], then

there exits X′ such that X[x1 | x2]≡ X′[x′1 | x′2]; or X′[x′] such that X[x1 | x2]≡ X′[x′1 | x′2]
with x′1 | x′2 = x′ ∈G.

The proof for (2) is similar to the one for (1).

Lemma C.3 (Diamond Property). Assume G is well-formed. Suppose s ∈ RS(A(G))
and s t1−→s1 and s t2−→s2 where (1) t1 and t2 are both inputs; or (2) t1 is an output and
t2 is an input, then there exists s′ such that s1

t ′1−→s′ and s2
t ′2−→s′ where `(t1) = `(t ′2) and

`(t2) = `(t ′1).

Proof. (1) Suppose t1 = p1q1?l1 and t2 = p2q2?l2. By linearity, l1 6= l2. By definition of
a receiving transition, we have p1q1 6= p2q2 (to allow both receptions at the same time).

If q1 6= q2, then s contains local states for q1 and q2 that each allow a reception.
Since t1 does not modify q2’s state (and vice-versa), the property holds.

If q1 = q2 = q, let X be the state of q in s. Let x1 = p1→ q : l1〈U1〉.x′1 and x2 = p2→
q : l2〈U2〉.x′2 be the relevant global transitions in G. We know that X≡ X1[x1]≡ X2[x2].
By Lemma C.2(1), we know that X≡ X3[x1 | x2]. Hence the diamond property holds by
definition of A(G).

Concerning (2), we suppose t1 = p1q1?l1 and t2 = p2q2!l2.
If q1 6= p2, then s contains local states for q1 and p2 that allow a reception and a

send, respectively. Since t2 does not modify q2’s state (and vice-versa), the diamond
property holds.

If q1 = p2 = q, let X be the state of q in s. Let x1 = p1→ q : l1〈U〉.x′1 and x2 = q→
q2 : l2〈U〉.x′2 be the relevant global transitions in G. We know that X≡ X1[x1]≡ X2[x2].
Then by Lemma C.2(2), we have X≡ X3[x1 | x2]. Hence the diamond property holds by
definition of A(G).

Proposition C.6 (Stable-Outputs Decomposition). Assume G is well-formed and s ∈
RS(A(G)). Then there exists s0

ϕ1−→·· · ϕn−→s where each ϕi is stable-outputs, i.e. s is
reachable by an SOS execution.

Proof. By induction on the number of transitions leading to the state s.
If s = s0, we conclude trivially. If the last transition to s is a send, then we can con-

clude by induction. We therefore examine the only interesting case: the last transition
is of the form t = (sn,pp

′?l,s). The corresponding global type transition is x = p→ p′ :
l〈U〉.x′ ∈G.

We call ϕ an SOS execution from s0 to sn such that the sending action, of the form
t ′ = (si,pp

′!l,si+1), corresponding to t is the closest to sn. We are thus in the following
situation (with ϕ0 SOS, and a minimal ϕ1):

s0
ϕ0−→ si

t ′−→ si+1
ϕ1−→ sn

t−→ s

35

assume ϕ0 to be stable-outputs.
By minimality of ϕ1, we deduce that t ′ϕ1 is an SOS causal chain (meaning that

each action is either causally related to a previous one, or is a sending action preceding
a reception). Since t /∈ ϕ1, the SOS causality chain ϕ1 only involves transitions that cor-
respond to global type transitions that are successors of x. Therefore, we know that ϕ1
does not contain any action by p′ and thus that t is not causally related to any transition
in ϕ1. By Lemma C.1, our reordered situation is the following:

s0
ϕ0−→ si

t ′−→ si+1
t−→ s′i+1

ϕ1−→ s

Since ϕ0t ′ϕ1 was SOS, ϕ0t ′tϕ1 is SOS.

Proposition C.7 (Reception Error Freedom). If the global type G is well-formed,
then A(G) is reception-error-free.

Proof. By definition of A(G), only transitions with correct labels can exist.

Proposition C.8 (Stable Configurations). Suppose s0
ϕ1−→·· · ϕn−→s with ϕi stable-outputs.

Then there exists an execution
ϕ ′−→ such that s

ϕ ′−→ s3 and s3 is stable, and there is a 1-

buffer execution s0
ϕ ′′−→ s3.

Proof. We proceed by induction on the total number of messages that are in the buffers
in reachable configuration s and on the size of the non-globally ordered suffix of an
execution to reach s.

By Proposition C.6, we have the existence of SOS executions reaching s from s0.
We take the one with the maximal (i.e. longest) globally ordered prefix. If this prefix
reaches s, we are done. Otherwise we are in the following situation:

s0
ϕ0−→si

t−→si+1
ϕ1−→s

with ϕ0 maximal, globally ordered and 1-buffer, and si stable.
By definition of an SOS and globally ordered execution, t is of the form pq!l,with

x = p→ q : l〈U〉;x′ ∈ G̃. Since ϕ0 is maximal, we know that x is not the consecutive
transition of any in ϕ0. It implies that there exists a chain of consecutive transitions
x1, . . . ,xk from some point in ϕ0, with xk ≺G̃ x. By definition of A(G), the alternation
of send and receive transitions from x1, . . . ,xk, written ϕ∗, are executable from si. These
transitions ϕ∗ are such that ϕ0ϕ∗ is globally ordered and that no transition of ϕ∗ are in
ϕ1. It is therefore possible to apply Lemma C.3 in the following way.

s0
ϕ0−→si

t−→si+1
ϕ1−→s ϕ∗−→s∗ and s0

ϕ0−→si
ϕ∗−→ t−→s′i+1

ϕ1−→s∗

There are now two cases:

– If t is immediately followed in ϕ1 by the corresponding t ′ = pq?l, i.e. ϕ1 = t ′ϕ2, we
use the induction hypothesis on s∗ defined by s0

ϕ0−→si
ϕ∗−→ t−→s′i+1

t ′−→ ϕ2−→s∗, which is an
SOS execution with the same buffer size as the one for s, but with a smaller non-
globally ordered suffix (a suffix of ϕ2). We therefore get the existence of ϕ ′ such
that s∗ ϕ ′−→s′′ with s′′ stable. For s, the execution leading to s′′ is thus s ϕ∗−→s∗ ϕ ′−→s′′.

36

– If ϕ1 does not contain the transition t ′ = pq?l, it is possible to execute it from state
s∗ and state s′i+1, and it commutes with ϕ1. We thus have:

s0
ϕ0−→si

t−→si+1
ϕ1−→s ϕ∗−→s∗ t ′−→s′ and s0

ϕ0−→si
ϕ∗−→ t−→s′i+1

t ′−→s′ ϕ1−→s′

The state s′ is thus accessible by an SOS execution and its buffer usage is inferior to
s’s buffer usage. We can thus apply the induction hypothesis and get the existence
of ϕ ′ such that s′ ϕ ′−→s′′ with s′′ stable. For s, the execution leading to s′′ is thus
s ϕ∗−→s∗ t ′−→s′ ϕ ′−→s′′.

Proposition C.9 (Deadlock-Freedom). If G is well-formed, then A(G) is deadlock-
free.

Proof. By (reception error freedom) and (correct ending), together with (stable-output
decomposition), we only have to check, there is no input is waiting with an empty queue
forever. Suppose by contradiction, there is s ∈ RS(A(G)) such that s = (~q;~ε) and there
exists input state qp ∈~q and no output transition from qk such that k 6= q.

Then by the shape of global types, there exists at least one G= x= q→ p : l〈U〉.x′ ∈
G̃ for some q. By well-formedness of G, there is a 1-buffer execution ϕ which corre-
sponds to this G.

Since ϕ is not taken (if so, by (linearity), qp can perform an input), then there is
another execution ϕ ′ such that it leads to state s which is deadlock at qp.

Case (1) Suppose ϕ does not include input actions at q except l, i.e. l is the first input
action at q in ϕ . We let ϕ0 for the prefix before the actions of qp!l ·qp?l.

By (choice awareness), we know p ∈ Rcv(ϕ ′).
By the assumption, the corresponding input action has a different label from l, i.e.

q′p?l′ ∈ ϕ ′. By the same argument of the proofs in Lemma C.3 and Proposition C.6,
q′p?l′ and qp?l are originated from the parallel composition (i.e. t1 ./ t2 with q′p?l′ =
`(t1) and qp?l = `(t2)). Hence the both corresponding outputs q′p!l′ and qp!l can be
always fired if one of them is (since they are also originated from the parallel compo-
sition by definition of A(G)). This contradicts the assumption that qp is deadlock with
label l.
Case (2) Suppose ϕ includes other input actions at q before qp?l, i.e. p ∈ Rcv(ϕ0).
Let q′p?l′ the action which first occurs in ϕ0. By p ∈ Rcv(ϕ ′), there exists q′′p?l′′ ∈
ϕ ′. If q′′p?l′′ 6= q′p?l′, by the same reasoning as (1), the both corresponding outputs
are available. Hence we assume the case q′′p?l′′ = q′p?l′. Let s is the first state from
which a transition in ϕ0 and a transition in ϕ ′ are separated. Then by assumption, if

s
ϕ0·q′p!l′·q′p?l′−−−−−−−−→ s1 and s

ϕ1·q′p!l′·q′p?l′−−−−−−−−→ s2, by assumption l′ 6∈ ϕ0∪ϕ1, hence s
q′p!l′·q′p?l′−−−−−−→

s′1
ϕ ′0−→ s1 and s

q′p!l′·q′p?l′−−−−−−→ s′2
ϕ ′1−→ s2 by Lemma C.1. Since s1 can perform an input at

q by the assumption (because of qp?l), ϕ ′1 should contain an input at q by the choice
awareness. If it contains the input to q in ϕ ′1, then we repeat Case (2); else we use Case
(1) to lead the contradiction; otherwise if it contains the same input as qp?l, then it
contradicts the assumption that qp is deadlock.

Proposition C.10 (Strong Boundedness). If G is well-formed and all cycles in A(G)
has an IO-causality between uses of the same channel, then G is strongly bounded.

37

Proof. We follow exactly [10, § 3].

Proposition C.11 (Progress). If G is well-formed, then A(G) satisfies the progress
property.

Proof. By Propositions C.5, C.7 and C.9.

Proposition C.12 (Liveness). If G is well-formed and x= end∈G, then A(G) satisfies
the liveness property.

Proof. By Propositions C.11 and C.5.

C.6 Equivalence between Global State Automata and MSA

We now state that the collection of the local state automata obtained after projection
from a global type is actually the same automaton as the global state automaton that
can be defined directly.

Proposition C.13 (Automaton Equivalence). For any well-formed global type G, the
MSA A(G) is isomorphic to the collection (A(G � p1), . . . ,A(G � pp)).

Proof. The sets of states, channels and alphabets are identical.
The state equivalences are identical as well, since projection for p′′ of x = p→ p′ :

l〈U〉;x′ gives x = x′ and the state equivalences for global state automata and MSAs are
the same in this case. Thus, the equivalence relation for states for A(G � p) is the same
as the one that can be proved under p in A(G).

The transitions are also identical by definition.

C.7 Proofs for Properties of MSA

We use Proposition C.13.

Proofs for Lemma 3.1

1. (Determinism) By Proposition C.3 and Proposition C.13.
2. (Choice Awareness) By Proposition C.4 and Proposition C.13.
3. (Diamond Property) By Lemma C.3 and Proposition C.13.
4. (Stable-Outputs Decomposition) By Proposition C.6 and Proposition C.13.
5. (Stable Configurations) By Proposition C.8 and Proposition C.13.

Proofs for Theorem 3.1 By Proposition C.9 and Proposition C.13.

Proofs for Theorem 3.2 By Proposition C.10 and Proposition C.13.

Proofs for Theorem 3.3 By Proposition C.11, Proposition C.12 and Proposition C.13.

38

D Appendix for Section 4

D.1 Additional Process Examples

Broker B in the Trade Example

PB = def x(x, t,o) = x[B](z).x0(t,o,z)
x0(t,o,z) = z?〈B, Item(x)〉.x1(t,o,0,z)

x5(t,o, i,z) + x1(t,o, i,z) = x2(t,o, i,z)
x2(t,o, i,z) = if t < i then x3(t,o,z)

else x6(i,z)
x3(t,o,z) = z !〈C,Offer〈o〉〉.x4(t,o+5,z)
x4(t,o,z) = z?〈C,Counter(i)〉.x5(t,o, i,z)

x6(i,z) = x7(i,z) | x8(i,z)
x7(i,z) = z !〈S,Final〈i〉〉.x9(z)
x8(i,z) = z !〈C,Result〈i〉〉.x10(z)

x9(z) | x10(z) = x11(z)
x11(z) = end in x(a,42,0)

New Name Creation The following P1 corresponds to µX .x[p](y).(νa)y !〈p, l〈a〉〉.X
where µX .P represents the standard recursion. This agent sends a fresh name whenever
asked.

P1 = def x0(x) = x[p](y).x1(x,y)
x1(x,y) = (νa)x2(x,y,a)

x2(x,y,z) = y !〈p, l〈z〉〉.x0(x) in x0(b)

The following P2 represents (νa)µX .x[p](y).y !〈p, l〈a〉〉.X which sends the same
name each time.

P2 = (νa)def x0(x,z) = z[p](y).x1(x,z,y)
x1(x,z,y) = y !〈p, l〈x〉〉.x0(x,z) in x0(a,b)

D.2 Structure Congruence Rules

We define structural congruence for process states, processes and networks which are
defined in figure 22 (we omit the queue as it is the same as in [3]).

D.3 Omitted Operational Semantics

We list the omitted operational semantics in figure 23.

39

Fig. 22. Structural Congruence for Processes and Networks

x(x̃) = x′(ỹ) | x′′(z̃) ` x(ṽ)≡ x′(ỹ[ṽ/x̃]) | x′′(z̃[ṽ/x̃])

x(ỹ) | x′(z̃) = x′′(x̃) ` x(ỹ[ṽ/x̃]) | x′(z̃[ṽ/x̃])≡ x′′(ṽ)
x(x̃)+x′(x̃) = x′′(x̃) ` x(ṽ)≡ x′′(ṽ)
x(x̃)+x′(x̃) = x′′(x̃) ` x′(ṽ)≡ x′′(ṽ)

x(x̃) = 0 ` x(ṽ)≡ 0
P̃ ` X | (νa)X′ ≡ (νa)(X | X′) (a 6∈ X)

P̃ ` X | X′ ≡ X′ | X
P̃ ` X≡ X′′

P̃ ` X | X′ ≡ X′′ | X′
P̃′ ` X≡ X′

P̃, P̃′, P̃′′ ` X≡ X′

def P̃ in 0≡ 0 def P̃ in (νa) X≡ (νa) def P̃ in X

N || 0≡ N N || N′ ≡ N′ || N N || (N′ || N′′)≡ (N || N′) || N′′

N || (νn)N′ ≡ (νn)(N || N′) (n 6∈ N) (νn) 0≡ 0 (νs)(s : h)≡ 0

E Appendix for Section 5

E.1 Operators in figure 13

We give the full definition of operators used in figure 13. We then give the detailed
explanation for typing rules in figure 13.

Assume Ti = def T̃i in xi (i = 1,2) and T = def T̃ in x′.

1. T]x=x′ def
= def x=x′, T̃ in x

2. T′]x=!〈p, l〈U〉〉.x′ def
= def x=x′, T̃ in x

3. T′i]x=?〈p, l〈U〉〉.x′ def
= def x=?〈p, l〈U〉〉.x′, T̃ in x

4. (T1∪T2)]x=x1 | x2
def
= def x = x1 | x2, T̃1∪ T̃2 in x

5. (T1⊕T2)]x=x1⊕x2
def
= def x = x1⊕x2, T̃1∪ T̃2 in x

6. (T1&T2)]x=x1&x2
def
= def x = x1&x2, T̃1∪ T̃2 in x

7. Ti]x1 +x2=x def
= def x1 +x2=x, T̃ in xi

8. Ti]x1|x2=x′ def
= def x1|x2=x′, T̃ in xi

E.2 Omitted Rules from Fig. 13

We list the omitted typing rules in figure 24.

E.3 Explanations of Typing Rules

1. The rules for expressions ([TRUE, NAMES, NOT]) are standard.
2. Rule [INIT] types the initialisation where ỹ is variables for sorts, while z̃ are variables

for session types. ỹ should cover x and variables in ẽ appeared in the right hand
side. State variables x and x′ are assigned by corresponding type where zi has type
T] x=x′, which means that we record x=x′ at the head of T. This is essentially
the same as usual session type.

40

Fig. 23. Operational Semantics (remaining rules)

e[ṽ/x̃] ↓ false ẽ′′[ṽ/x̃] ↓ ṽ′′

x(x̃)=if e then x′(x̃) else x′′(x̃) ` x(ṽ) τ−→ x′′(ṽ′′)
[IFF]

P̃ ` X0
α−→ X′0

P̃ ` X0 | X
α−→ X′0 | X

[PAR]

P̃′ ` X α−→ X′

P̃, P̃′, P̃′′ ` X α−→ X′
[WEAK]

P̃ ` X≡ X0
α−→ X′0 ≡ X′

P̃ ` X α−→ X′
[STR]

P̃ ` X α−→ X′ a 6∈ α

P̃ ` (νa)X α−→ (νa)X′
[RES]

N−→ N′
(νn) N−→ (νn) N′

[RESN] N−→ N′
N || N′′ −→ N′ || N′′

[PARN]
N≡ N0 −→ N′0 ≡ N′

N−→ N′
[STRN]

3. Rule [REQ] is similar except we record introduced session type T = G � p in x′ in the
right side.

4. Rule [SEND] records the send type for zi (Ti = x =!〈p, l〈U〉〉.x′) and x = x′ for all
other sessions.

5. Rule [RECV] is its symmetric rule. It records Ti = T′i] x=?〈p, l〈U〉〉.x′ for zi and
x = x′ for all other sessions.

6. Rule [DELEG] types the delegation (sending a session name) where we record the type
T of the sent session name y as the argument of x (as the standard rule [14]).

7. Rule [CATCH] is its symmetric rule, recording T for y as the final argument x′.
8. Rule [PAR] introduces the parallel composition. The operation (T1∪T2)]x=x1 | x2

means we record x=x1 | x2 at the head of a union of T1 and T1. Note that ỹ covers
a union of ỹ1 and ỹ2 and session names z̃ are common so that the substitution is
always defined.

9. Rule [JOIN] is its symmetric rule.
10. Rule [IF] introduces the internal choice. We note that variables in e and ẽ are covered

by ỹ.
11. Rule [CHOICE] types the external choice.
12. Rule [MERGE] merges two types.
13. In rule [RES], we record type 〈G〉 for a (the last argument of x′).

E.4 Typing Run-Time Processes

This subsection defines the typing systems for runtime processes. We use the following
abbreviations for message types.

T ::= def T̃ in X

T ::= !〈p1, l1〈U1〉〉; !〈p2, l2〈U2〉〉; · · ·!〈pn, ln〈Un〉〉

Type T is called message type which contains single x = ε (instead of x = end) and
others are sequence of outputs which represents a sequence of messages stored in a
queue [3].

∆ | ∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)
∪{c : ∆(c)|∆ ′(c) | c ∈ dom(∆)∩dom(∆ ′)}

41

Fig. 24. Typing System for Initial State Processes (remaining rules)

Γ ` true : bool
[TRUE] u : U ∈ Γ

Γ ` u : U
[NAME] Γ ` e : bool

Γ ` not(e) : bool
[NOT]

ỹ : Ũ ` ẽ : Ũ ′ Ti = T′i]x=!〈p, l〈T〉〉.x′ ∀ j 6= i,T j = T′j]x=x′

` x(ỹz̃y) = zi !〈p, l〈y〉〉.x′(ẽz̃)�x : Ũ T̃T [] x′ : Ũ ′ T̃′
[DELEG]

ỹ : Ũ ,y : U ` ẽ : Ũ ′ Ti = T′i]x=?〈p, l〈U〉〉.x′ ∀ j 6= i,T j = T′j]x=x′

` x(ỹz̃) = zi ?〈p, l(y)〉.x′(ẽz̃)�x : Ũ T̃ [] x′ : Ũ ′ T̃′
[RECV]

ỹ : Ũ ` ẽ : Ũ ′ Ti = T′i]x=?〈p, l〈T〉〉.x′ ∀ j 6= i,T j = T′j]x=x′

` x(ỹz̃) = zi ?〈p, l(y)〉.x′(ẽz̃y)�x : Ũ T̃ [] x′ : Ũ ′ T̃′T
[CATCH]

ỹ : Ũ ` e : U ỹ : Ũ ` ẽ1 : Ũ1 ỹ : Ũ ` ẽ2 : Ũ2 ∀i,Ti = (T1i∪T2i)]x=x1⊕x2

` x(ỹz̃) =if e then x1(ẽ1z̃) else x2(ẽ2z̃)�x : Ũ T̃ [] x1 : Ũ1 T̃1,x2 : Ũ2 T̃2
[IF]

∀i,Ti = (T1i∪T2i)]x=x1 & x2

` x(ỹz̃) = x1(ỹz̃) & x2(ỹz̃)�x : Ũ T̃ [] x1 : Ũ T̃1,x2 : Ũ T̃2
[CHOICE]

∀i,Ti = T′i]x1 +x2=x
` x1(ỹz̃)+x2(ỹz̃) = x(ỹz̃)� x1 : Ũ T̃,x2 : Ũ T̃ [] x : Ũ T̃′

[MERGE]

∀i, T̃′i = T̃i]x=x′

` x(ỹz̃) = (νa)x′(aỹz̃)�x : Ũ T̃ [] x′ : 〈G〉Ũ T̃′
[RES]

∀i,Ti = def x = end in x
` x(ỹz̃) = 0�x : Ũ T̃ []

[NIL]

Γ ` N1 Γ ` N2
Γ ` N1 || N2

[NPAR]
Γ ,a : 〈G〉 ` N

Γ ` (νa)N
[NRES]

Γ ` 0
[NNIL]

where
(def T̃ in x1) | (def T̃ in x2) = def T̃ in (x1 | x2)

!〈p1, l1〈U1〉〉; · · ·!〈pn, l1〈Un〉〉 | (def T̃ in x) = def T̃ ′ in x

with T̃ ′ = x =!〈p1, l1〈U1〉〉.x1, · · ·xn =!〈p2, l2〈U2〉〉.xn+1, T̃ [xn+1/x].
| is the parallel composition of two definition types or we concatenate a message

type to the top of the definition type. Other cases are undefined.

Fig. 25. Typing Rules for Run-Time State Processes

` Pi �Σi [] Σ ′i comp({Σi ; Σ ′i}i) x : ŨT̃ ∈ Σi Γ ` ṽ : Ũ
[STATE]

Γ , P̃ ` x(ṽc̃)� c̃ : T̃

Γ , P̃ ` Xi �∆i (i = 1,2)
[PAR]

Γ , P̃ ` X1 | X2 �∆1 | ∆2

Γ ,a : 〈G〉, P̃ ` X�∆

[RES]
Γ , P̃ ` (νa)X�∆

` Pi �Σi ; Σ ′i comp({Σi ; Σ ′i}i)
[NIL]

Γ , P̃ ` 0� c̃ : def x = end in x

Γ , P̃ ` X�∆

[RDEF]
Γ ` def P̃ in X�∆

42

We define the generalised session types which have both message and completed
types.

Generalised T ::= T session
| T message
| T;T continuation

Then ; is defined by:

∆ ;{s[q : r] : T}=

{
∆ ′,s[q : r] : T′;T if ∆ = ∆ ′,s[q : r] : T′,
∆ ,s[q : r] : T otherwise.

Fig. 26. Typing System for Run-Time State Processes

[QINIT]
Γ `S s : ε . /0

Γ `S s : h.∆ Γ ` ṽ : U
[QVAL]

Γ `S s : h · (q,p, l〈v〉).∆ ;{s[q] :!〈p, l〈U〉〉}

Γ `S s : h.∆

[QDELEG]
Γ ` s : h · (q,p, l〈s′[p′]〉)� (∆ ,s′[p′] : T′);{s[q] :!〈p, l〈T′〉〉}

Fig. 27. Typing system for queues

Γ ` P.∆

[PROM]
Γ `∅ P.∆

Γ `S N.∆ ∆ ≈ ∆
′

[EQ]
Γ `S N.∆

′

Γ `S N.∆ Γ `S ′ N′ .∆
′

[GPAR]
Γ `S]S ′ N ||N′ .∆ | ∆ ′

Γ `S N.∆ co(s,∆)
[GSRES]

Γ `S \s (ν s)N.∆ \ s

Γ ,a : 〈G〉 `S N.∆

[GNRES]
Γ `S (ν a)N.∆

Γ ` a : 〈G〉 G � p= T
[GINIT]

Γ ` /0 a[p]〈s〉. s[p] : T

Typing Systems The typing of the state is similar with the definition agent, given in
Fig. 25. The typing of network processes and the typing for queues are essentially the
same as the communication typing system in [3] since the network level processes can
be seen as the same as the original session calculus. Hence we omit co(s,∆) (which
means ∆ is a complete collection of projections from some G at s) and the standard
type equivalence.

43

F Appendix for Section 6

F.1 Transition Rules between Environments

We define the transition system between environments in figure 28. We also omitted the
following structure rule from the type transition system.

T0 ≡ T `−→ T′ ≡ T′0
T0

`−→ T′0
bSTRc

Fig. 28. Environment Transition System

(Γ ,∆)
τ−→ (Γ ,∆) [TAU]

(Γ ,a : 〈G〉,∆)
a〈G〉−−−→ (Γ ,a : 〈G〉,∆) [INIT]

(Γ ,a : 〈G〉,∆)
a〈s〉[p]−−−−→ (Γ ,a : 〈G〉,∆ ,s[p] : G � p) [ACC]

T
!〈q,l〈U〉〉−−−−−→ T′ Γ ` v : U

(Γ ,∆ ,s[p] : T)
s[p,q]!l〈v〉−−−−−−→ (Γ ,∆ ,s[p] : T′)

[SEND] T
?〈p,l〈U〉〉−−−−−→ T′ Γ ` v : U

(Γ ,∆ ,s[p] : T)
s[q,p]?l〈v〉−−−−−−→ (Γ ,∆ ,s[p] : T′)

[RECV]

T
!〈q,l〈Ts〉〉−−−−−−→ T′

(Γ ,∆ ,s[p] : T,s′[p′] : Ts)
s[p,q]!l〈s′[p′]〉−−−−−−−−→ (Γ ,∆ ,s[p] : T′)

[DELEG]

T
?〈p,l〈Tr〉〉−−−−−−→ T′

(Γ ,∆ ,s[p] : T)
s[p,q]?l〈s′[p′]〉−−−−−−−−→ (Γ ,∆ ,s[p] : T′,s′[p′] : Tr)

[CATCH]

T1
!〈q,l〈U〉〉−−−−−→ T′1 T2

?〈p,l〈U〉〉−−−−−→ T′2
(s[p] : T1,s[q] : T2,∆)−→ (s[p] : T′1,s[q] : T′2,∆)

[COM]

In figure 28, rules bINIT,ACCc are used for the session initiations. Others promote
transitions between local types to transitions between environments. Other rules are
straightforward.

F.2 Proofs

Proof of Lemma 6.1

1. (Process P) For the axioms in figure 22, we use the type equalities in figure 9.
Others are straightforward by induction.

2. (Def agents P) For the case of join and merge, we use the structure rule for local
types defined in figure 14.

3. (Network N) The same as [3].

44

Proof of Theorem 6.1 (Process P)

Case [SEND] Suppose:

x(ỹz̃) = x !〈p, l〈e〉〉.x′(ẽz̃) ` x(ṽc̃)
s[q,p]!l〈v〉−−−−−→ x′(ṽ′c̃)

with x[c̃/z̃] = s[q], e[ṽ/ỹ] ↓ v and ẽ[ṽ/ỹ] ↓ w̃ by [SEND]. Then by [STATE] in figure 25,

Γ ,P ` x(ṽc̃)� c̃ : T̃

and
P = x(ỹz̃) = x !〈p, l〈e〉〉.x′(ẽz̃)

has type
` P�x : Ũ T̃ [] x′ : Ũ ′ T̃′

with
ỹ : Ũ ` e : U, ỹ : Ũ ` ẽ : Ũ ′,

and
Ti = T′i]x=!〈p, l〈U〉〉.x′ ∀ j 6= i,T j = T′j]x=x′

with zi = x. By substitution lemma,

w̃ : Ũ ` e[ṽ/ỹ] : U,ei[ṽ/ỹ] : Ui

On the other hand, by bSEND`c in figure 14, we have

Ti = T′i]x=!〈p, l〈U〉〉.x′ !〈p,l〈U〉〉−−−−−→ T′i

This implies, by [SEND] in figure 28, with Γ ` v : U and x[c̃/z̃] = s[q], we have:

(Γ ,∆)
s[q,p]!l〈v〉−−−−−→ (Γ ,∆ ′)

where ∆ = c̃ : T̃ and ∆ ′ = ∆ \ s[q]∪{s[q] : T′i} as desired.

Case [RECV] Similar with [SEND].

Case [INIT] Similar with next [ACCEPT].

Case [ACCEPT]

Suppose

x(ỹz̃) = x[p](y).x′(ẽz̃y) ` x(w̃c̃)
a[p]〈s〉−−−→ x′(ṽc̃s)

with a = x[w̃/ỹ], ẽ[w̃/ỹ] ↓ ṽ, By [REQ] in figure 13,

` x(ỹz̃) = x[p](y).x′(ẽz̃y)�x : Ũ T̃ [] x′ : Ũ ′ T̃′T

with ỹ : Ũ ` ẽ : Ũ ′, ỹ : Ũ ` x : 〈G〉, ∀i,Ti = T′i]x=x′ and T = G � p. Then by [STATE] in
figure 25, we have:

Γ , P̃ ` x(w̃c̃)� c̃ : T̃

45

and, by [ACC] in figure 28, we have

(Γ ,∆)
a[p]〈s〉−−−→ (Γ ,∆ ,s[p] : T)

By [STATE] in figure 25, we have

Γ , P̃ ` x′(ṽc̃s)� c̃ : T̃,s[p] : T

as desired, noting T′i ≡ Ti.
Case [IFT,IFF] Direct by using bCONDc in figure 14.
Case [NEW] Trivial by [STATE] and [RES] in figure 25.
Case [EXT] Direct by using bCHOICEc in figure 14.
Other cases ([PAR],[WEAK],[STR],[RES]) are straightforward by induction.

(Def agent P)

1. The case P α−→ P′ is straightforward by [DEF] in figure 13 and [STATE] in figure 25.
2. The case [TAU] is trivial.

(Network N)
Case [PUT] Assume

P || s : h−→ P′ || s : h · (p,q, l〈v〉)

with
P

s[p,q]!l〈v〉−−−−−→ P′

Since there is a typed transition, s[p] in P has a type

T1
def
= (def x =!〈pn, l1〈Un〉〉.x1, T̃ in x)

and s[p] in s : h has a type

T1
def
=!〈p1, l1〈U1〉〉; · · · ; !〈pn−1, l1〈Un−1〉〉

On the other hand, s[p] in P′ has a type:

T2
def
= (def T̃ in x1)

and s[p] in s : h · ·(p,q, l〈v〉) has a type

T2
def
=!〈p1, l1〈U1〉〉; · · ·!〈pn−1, l1〈Un−1〉〉·!〈pn, l1〈Un〉〉

Then by the parallel composition rule, we have T2 | T2 = T1 | T1, as desired.

Case [GET] Similar with [PUT].

Case [INITN]

Easy using [GINIT], and noting a parallel composition of a[pi]〈s〉 forms the complete type

46

co(s,∆) with ∆ = {s[pi] : Ti}i, hence we can close by name hiding.

Case [ACCN] .

By [GINIT] in figure 26, we can assume Γ ` P || a[p]〈s〉�∆ ,s[p] : G � p with Γ ` a : 〈G〉.
Then by [REQ] in figure 13, Γ ` P′�∆ ,s[p] : G � p, as required.

Other cases [RESN ,PARN ,STRN] are standard.

This concludes all cases for Subject Transition and Reduction Theorems. ut

Theorem 6.5 Since P and X does not contain P such that a primitive which can be
blocked from the outside, i.e. P̃ in def x0(x) = x[p](y).x1, P̃ in x0(a) does not contain
any initiator, acceptor, name creator, delegation nor catch (sending and receiving session
channels as arguments), completeness for P and X is trivial due to a tight correspon-
dence between types and processes. Hence we only show the main case, (3).

Assume N is simple and N −→∗ N′. W.l.o.g, we can assume N −→∗ N′ ≡ (νs)(s :
/0 || P1 || · · · || Pn) with a : 〈G〉 ` P j � s[p j] : T j. By assumption, there exists i 6= j such
that

T1
!〈p j ,l〈U〉〉−−−−−→ T′1 T2

?〈pi,l〈U〉〉−−−−−→ T′2
(s[pi] : T1,s[p j] : T2,∆)−→ (s[pi] : T′1,s[p j] : T′2,∆)

[COM]

Then by assumption,

Pi
s[pi,p j]!l〈v〉−−−−−−→ P′i

Hence, we have:
Pi || s : h−→ P′i || s : h · (p,q, l〈v〉)

by [PUT]. On the other hand, we have:

P j
s[pi,p j]?l〈v〉
−−−−−−→ P′j

This implies
P j || s : (pi,p j, l〈v〉) ·h−→ P′j

Hence, even in the case h = /0, there exists at least two steps reductions such that: Pi ||
P j || s : h−→−→ P′i || P′j || s : h, as required.

47

