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Multiparty Session Types (MPST) are a well-established typing discipline for message-
passing processes interacting on sessions involving two or more participants. Session typing 
can ensure desirable properties: absence of communication errors and deadlocks, and 
protocol conformance.
We propose a novel MPST theory based on a rely/guarantee typing system, that checks (1)
the guaranteed behaviour of the process being typed, and (2) the relied upon behaviour of 
other processes. Crucially, our theory achieves type safety by enforcing a typing context 
liveness invariant throughout typing derivations.
Unlike “classic” MPST works, our typing system does not depend on global session types, 
and does not use syntactic duality checks. As a result, our new theory can prove type 
safety for processes that implement protocols with complex inter-role dependencies, thus 
sidestepping an intrinsic limitation of “classic” MPST.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Session types are a typing discipline for processes that exchange messages via channels, and implement sessions with 
structured protocols featuring inputs/outputs, choices, and recursion. The goal of session typing is to statically ensure that a 
given process correctly implements a given protocol, without causing communication errors or deadlocks at run-time. Years 
of research have shown that the session-based framework is applicable to a wide range of calculi, programming languages, 
and computing environments [23,1,16].

Binary session types In their original formulation, session types describe binary sessions involving exactly two participants, 
or roles [20,19,35]. In binary session theories, types are similar to S = ⊕m1 .&m2, meaning “send message m1, and then 
receive message m2.” Typing judgements have the following form:

� P � � (1)

meaning that process P uses its communication channels according to the typing context � — which in turn maps channels 
to session types. Hence, when � contains the mapping c : S , the judgement (1) means that P uses the channel c first to 
send m1, and then to receive m2 — as prescribed by S .

Notably, the typing judgement (1) does not only determine the behaviour of P : it also implicitly describes how other pro-
cesses in P ’s environment can send/receive messages to/from P . This is because in a well-typed system, each input/output 
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of P must match a corresponding output/input of some other process playing the unique “opposite” role in the correspond-
ing binary session. This complementarity between session endpoints is formalised as duality: a fundamental element of the 
binary session types theory, inspired by linear logic [18] as originally stated in [19], and subsequently studied in various 
works (e.g., [9,36,37,10]). By duality, if P interacts with another process Q through some channels, then we can infer the 
following typing judgement:

� Q � � (2)

where � is the dual of �: it contains the same channels, but mapped to dual types where each input is turned into a 
corresponding output, and each output into an input. For example, if � contains the mapping c :S above, then we can infer 
that � contains c :S , where S = &m1 .⊕m2 — meaning “use channel c to receive message m1, and then send m2.” Now, since 
(2) guarantees that Q behaves dually w.r.t. P , we know that the parallel composition of P and Q will execute correctly: 
e.g., P and Q will use channel c to exchange messages m1 and then m2, according to types S and S .

Multiparty session types Binary session types do not allow to directly formalise and verify protocols with more than two 
interacting roles. This limitation has been addressed by Multiparty Session Types (MPST), which were introduced in [21] and 
have been actively studied both in theory and applications (see related work in [22]). In a nutshell, the MPST framework 
foster a top-down approach where:

(1) a choreography involving two or more interacting roles is formalised as a global type G;
(2) G is projected onto a set of (local) session types S1, . . . , Sn (one per role of G), each one describing the expected in-

puts/outputs of a specific role from/to other roles in G;
(3) the session types S1, . . . , Sn are assigned to channels, used by MPST π -calculus processes that are type-checked against 

those types (i.e., S1, . . . , Sn).

In the multiparty setting, typing judgements still look like (1); however, types contain role annotations, and look like
S ′ = alice&m1.bob&m2.carol⊕m3, meaning “receive m1 from alice, then receive m2 from bob, then send m3 to carol.” 
As a consequence, the duality-based reasoning outlined above (for binary session types) does not work, and duality cannot 
be used directly. This is because in a multiparty session, P might interact with more than one other processes playing 
different roles in a session (e.g., alice, bob and carol) — and correspondingly, the multiparty typing context � would 
contain types requiring inputs/outputs from/to multiple roles (like S ′). Hence, instead of a single “other process” Q as in 
(2), we might have n other typed processes Q 1, . . . , Q n playing distinct roles:

� Q 1 � �1 � Q 2 � �2 . . . � Q n � �n (3)

Furthermore, Q 1, . . . , Q n might exchange messages between each other — and these inputs/outputs, albeit occurring in a 
multiparty session involving P , would not be “seen” by P . This means that such message exchanges would be described 
by the types in �1, . . . , �n , but could not be inferred by “dualising” �, unlike the binary case. This is problematic because 
such invisible communications might determine which future inputs/outputs Q 1, . . . , Q n will be willing to receive/send 
from/to P .

In the MPST theory, this lack of contextual information causes difficulties when proving subject reduction — i.e., when 
proving that typed processes reduce type-safely. These difficulties are addressed by imposing a “generalised duality” re-
striction, called consistency, that must hold for all typing contexts �, �1, . . . , �n — taken both in isolation, or in combination. 
Consistency ensures that well-typed processes will not engage in incompatible input/outputs at run-time; but unfortunately, 
consistency also severely restricts the set of MPST processes that can be typed and/or proven type-safe: in particular, com-
plex protocols with recursion and message dependencies are often non-consistent, and thus, unsupported by the “classic” 
MPST theory.1

Contributions We present a new multiparty session typing system that sidesteps the difficulties and limitations of consis-
tency in “classic” MPST. Its typing judgement has the following form:

� P � � � �

and intuitively reads: P uses its channels as specified by the guarantee context �, assuming that P is composed with other 
processes that use their channels according to the rely context �. For example, to type Q 1 in (3), the guarantee context 
is �1, while the rely context is �2, . . . ,�n , abstracting the behaviour of other processes composed with Q 1 (in this case, 
Q 2, . . . , Q n). With this rely/guarantee approach, our typing judgement conveys a global picture of the possible interactions 
between a process P and its environment, that is used to verify the absence of communication errors, and determine which 
processes can safely interact with P .

1 The reason for the consistency constraint, and its limitations, are rather technical; we discuss them in detail in Section 3.
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Channels c,d ::= x
∣∣ s[p] (variable, channel with role p)

Declarations D ::= X (̃x) = P (declaration of process variable X as P )

Processes P , Q ::= c[q]⊕m〈d〉.P (selection towards role q)
c[q]∑i∈I {mi (xi).Pi} (branching from role q, with I �= ∅)
P | Q (parallel composition)
(νs) P (session restriction/creation)
def D in P (process definition)
X 〈̃c〉 (process call)
0 (terminated process)

Fig. 1. Syntax of the standard MPST π -calculus. Here, x̃ represents a sequence x1, . . . , xn , and c̃ represents a sequence c1, . . . , cn (for some n ≥ 0).

Crucially, our typing system replaces consistency with a liveness constraint for typing contexts. Since liveness is a be-
havioural (rather than syntactic) property, our theory does not depend on the existence of global types: hence, it does not 
depend on the associated technicalities (necessary, e.g., to compute global/local type projections and merges), and supports 
multiparty protocols that cannot be projected from any global type.

Outline of the paper In Section 2, we present the standard definition of multiparty session processes, types, and typing 
contexts. In Section 3 we reprise the discussion above about consistency in “classic” MPST, formally explaining its limitations. 
In Section 4 we present our novel rely/guarantee multiparty session typing system (Definition 4.5), and its subject reduction 
property (Theorem 4.9), that does not depend on consistency. In Section 5, we highlight the differences between our new 
theory and “classic” MPST: we show that we support all protocols projected from any global type — and for this purpose, in 
Section 5.1 we relate liveness with a property of Communicating Finite-State Machines [8] called Multiparty Compatibility; in 
addition, we show that we also support protocols that cannot be projected from any global type. In Section 6, we conclude 
and discuss related works. Detailed proofs are available in the appendices.

2. Multiparty sessions: standard calculus, types and typing contexts

In this section, we summarise some key elements of the “classic” Multiparty Session Types (MPST) theory. We describe 
the multiparty session π -calculus and types, adopting a notation roughly based on Coppo et al. [11] and Scalas et al. [33]
(i.e., the most common formulation in MPST literature). We focus on a streamlined presentation, that will be sufficient for 
highlighting the limitations of “classic” MPST (Section 3) and for developing our new theory (Section 4).

We present the MPST π -calculus in Section 2.1, and session types and typing contexts in Section 2.2.

2.1. Multiparty session π -calculus

The multiparty session π -calculus is a variant of the π -calculus [30,29,32] where channels allow two or more roles to 
exchange messages.

Definition 2.1 (MPST π -calculus). MPST processes have the syntax shown in Fig. 1. Session restriction, branching, and dec-
larations act as binders, as expected. We write fc(P ) for the free channels with roles in P , dpv(D) for the process variables 
declared in D , fpv(D) for the free process variables in D , and fpv(P ) for the free process variables in P . We write s �∈ fc(P ) iff 
there is no p such that s[p] ∈ fc(P ).

A channel c or d can be either a variable x, or a channel with role s[p]: the latter represents a multiparty channel 
endpoint used to play the role p in the session s, and send/receive messages to/from other roles in s; variables, instead, are 
placeholders for channels with role, and are instantiated at run-time (details below). A message consists of a label m and a 
payload: different labels allow to distinguish different kinds of messages, while the payload is the actual data transmitted 
between processes. Note that payloads are channels themselves (and with minor extensions, they can be values like strings 
or integers — see Remark 2.2 later on). A process P or Q can be either:

• a selection that uses c to send a message with label m and payload d to q, and then continues as P ;
• a branching that uses c to receive from q a message with label mi (for any i ∈ I); then, depending on which mi has 

been received, the process instantiates the variable xi with the message payload, and continues as Pi ;
• a parallel composition where P and Q run concurrently, and possibly communicate through their channels;
• a session restriction (or session creation) delimiting the scope of s to P ;
• a process definition declaring X (with parameters ̃x) as P , with scope Q ;
• a process call where X is invoked with actual parameters ̃c;
• a terminated process 0.

Remark 2.2 (Abbreviations and simplifications). For brevity, when writing MPST π -calculus processes we will often omit trail-
ing 0s and immaterial message payloads, i.e.:

(a) c[p]⊕m.P stands for (νs) (c[p]⊕m〈s[q]〉.P ) with some q and s �∈ fc(P );
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[R-Comm] s[p][q]∑i∈I {mi (xi).Pi} | s[q][p]⊕mk〈s′[r]〉.Q → Pk
{

s′[r]/xk

} | Q (k ∈ I)

[R-X] def X(x1, . . . , xn) = P in (X〈s1[p1], . . . , sn[pn]〉 | Q ) → def X(x1, . . . , xn) = P in (P {s1[p1]/x1} · · · {sn[pn]/xn} | Q )

[R-|] P → P ′ implies P | Q → P ′ | Q [R-ν] P → P ′ implies (νs) P → (νs) P ′

[R-def] P → P ′ implies def X (̃x) = Q in P → def X (̃x) = Q in P ′

[R-≡] P ′ ≡ P → Q ≡ Q ′ implies P ′ → Q ′

P | Q ≡ Q | P (P | Q ) | R ≡ P | (Q | R) P | 0 ≡ P (νs)0 ≡ 0 (νs)
(
νs′) P ≡ (

νs′) (νs) P

(νs) (P | Q ) ≡ P | (νs) Q if s �∈ fc(P ) def D in 0 ≡ 0 def D in (νs) P ≡ (νs) (def D in P ) if s �∈ fc(D)

def D in (P | Q ) ≡ (def D in P ) | Q if dpv(D) ∩ fpv(Q ) = ∅
def D in (def D ′ in P ) ≡ def D ′ in (def D in P ) if (dpv(D) ∪ fpv(D)) ∩ dpv

(
D ′) = (dpv

(
D ′) ∪ fpv

(
D ′)) ∩ dpv(D) = ∅

Fig. 2. Standard MPST π -calculus: semantics (top) and structural congruence ≡ (bottom).

(b) c[p]∑{m1.P1 , m2(x).P2} stands for c[p]∑{m1(z). P1 , m2(x). P2} with z �∈ fv(P1).

Furthermore, note that the calculus in Definition 2.1 can be easily extended with, e.g., basic values (strings, integers, 
booleans. . . ) or conditionals. Such extensions are routine and orthogonal to our treatment; we will sometimes use them in 
examples, to make them more readable.

The abbreviations described in Remark 2.2 omit either (a) a channel with role s[p] that is sent just after s is created 
and just before s is discarded, or (b) a message payload variable z that is never referenced. We will see that the two 
abbreviations are often combined: in case (a) the message payload s[p] does not allow to interact with any other role 
(hence, the only “meaningful” element of the message is the label m, that can trigger a corresponding branch of the recipient 
process); correspondingly, the recipient of m can safely discard its payload, as in case (b).

Example 2.3. Below is an example of MPST π -calculus process:

(νs) (Pa | Pb | Pc) where:

Pa = s[alice][bob]⊕stop
Pb = s[bob][alice]∑{

m1(x).s[bob][carol]⊕m2〈"Hi"〉 ,

stop.s[bob][carol]⊕quit
}

Pc = s[carol][bob]∑{
m2(y).s[carol][alice]⊕m3〈true〉 ,

quit

} (4)

Here, (νs) (Pa | Pb | Pc) is the parallel composition of processes Pa , Pb , and Pc in the scope of the multiparty session s. 
Inside such processes, s[alice] (resp. s[bob], s[carol]) is a channel with role: it is used to send/receive messages on s, 
while playing the role of alice (resp. bob, carol). In the process Pa , the selection “s[alice][bob]⊕stop” means: the 
channel with role s[alice] is used to play role alice in session s, and send stop to bob. In process Pb , the channel 
with role s[bob] is used to play role bob in s and receive (

∑
) either m1 or stop from alice; then, in the first case, 

s[bob] is used to send m2 to carol; in the second case, s[bob] is used to send quit to carol.
Note that in (4), the trailing 0s and some message payloads are omitted, as explained in Remark 2.2.

We adopt the standard reduction relation → for MPST π -calculus processes, formalised in Definition 2.4.

Definition 2.4 (MPST π -calculus congruence and semantics). The structural congruence ≡ between MPST π -calculus processes 
is inductively defined by the rules in Fig. 2 (bottom). The reduction relation → between MPST π -calculus processes is 
inductively defined as shown in Fig. 2 (top). We write →∗ to denote the reflexive and transitive closure of →.

Fig. 2 contains the following rules:

• [R-Comm] is the communication rule: it says that the parallel composition of a branching process and a selection process 
operating on the same session s, and playing respectively the roles p and q, can reduce provided that (1) the two 
processes are targeting each other (i.e., the branching is from q and the selection is towards p), (2) the branching 
process supports the selected label mk , and (3) the selection payload is a channel with role s′[r] (not a variable). If 
these conditions hold, the two processes reduce to the respective continuations Pk and Q — with s′[r] replacing xk in 
the former;

• [R-X ] is the process call rule: inside the scope of the process declaration X (̃x) = P , calling X amounts to expanding P
and replacing the formal parameters x̃ with the actual parameters of the call (that must be channels with roles, and 
not variables);
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• rules [R-|], [R-ν], and [R-def] are the parallel, restriction, and process definition rules: they say that reductions can occur 
respectively inside parallel compositions, session restrictions and process definitions;

• [R-≡] is the up-to congruence rule: it says that if P reduces to Q , then any P ′ ≡ P reduces to any Q ′ ≡ Q . The process 
congruence, in turn, is standard: it says that | is a commutative monoid with 0 as neutral element, and garbage-collects 
unnecessary session restrictions and process declarations, or reorders them without name capturing.

Example 2.5. Take the process in Example 2.3. By Definition 2.4, it reduces as follows:

(νs) (Pa | Pb | Pc) → (νs) (0 | s[bob][carol]⊕quit | Pc) → (νs) (0 | 0 | 0) ≡ (νs)0 ≡ 0

2.2. Multiparty session types and typing contexts

Similarly to “classic” MPST works, our new typing system (introduced later on, in Section 4) will assign session types
(Definition 2.6 below) to channels, using typing contexts (Definition 2.9). For both, we adopt standard definitions from MPST 
literature.

Definition 2.6 (Multiparty session types). Session types (ranged over by S, T ) have the syntax:

S, T ::= p&i∈Imi(Si).S ′
i

∣∣ p⊕i∈Imi(Si).S ′
i

∣∣ end
∣∣ μt.S

∣∣ t with I �= ∅

where mi range over pairwise distinct message labels. We require recursive types to be contractive: i.e., in μt.S we have 
S �= t′ (∀t′). We define ≡ as the coinductive equivalence between type trees, such that μt.S ≡ S{μt.S/t} (i.e., a recursive type is 
equivalent to its unfolding, cf. Pierce [31, §21.7 and §21.8]).

In Definition 2.6, the branching type (or external choice) p&i∈Imi(Si).S ′
i says that a channel must be used to receive from 

p one input of the form mi(Si), for any i ∈ I chosen by p; then, the channel must be used following the continuation type S ′
i . 

The selection type (or internal choice) p⊕i∈Imi(Si).S ′
i , instead, says that a channel must be used to perform one output 

mi(Si) towards p, for some i ∈ I , and then according to S ′
i . The type end describes a terminated channel that cannot be 

further used for inputs/outputs. Finally, μt.S is a recursive session type: μ binds the recursion variable t in S . We distinguish 
a recursive type from its unfolding; when necessary, we explicitly relate them with the equivalence ≡.

Remark 2.7. For brevity, we will often omit the trailing end in types, and end-typed message payloads: e.g., p⊕m stands for 
p⊕m(end).end.

For readability, we will sometimes write examples using ground types like Int, Bool, etc.: their addition to Definition 2.6
is standard, and we omit it for simplicity.

Example 2.8. Consider the following session types:

Sa = bob⊕
{
m1(Int) . carol&m3(Bool) . end ,

stop . end

}
Sb = alice&

{
m1(Int) . carol⊕m2(Str) . end ,

stop . carol⊕quit . end

}
Sc = bob&

{
m2(Str) . alice⊕m3(Bool) . end ,

quit . end

} (5)

Intuitively, Sa says that a process using an Sa-typed channel must send (⊕) to bob a message that can be either m1(Int), 
or stop; in the first case, the process must then use the same channel to receive (&) message m3(Bool) from carol, after 
which the session ends; otherwise, in the second case, the session ends without further interactions. The other types follow 
a similar intuition.

Note that in (5), end-typed message payloads are omitted, and we use ground types as explained in Remark 2.7.

We also adopt the standard definitions of MPST typing context (Definition 2.9) and typing context reduction (Defini-
tion 2.10).

Definition 2.9 (Typing context). A multiparty session typing context, denoted by � or �, is a partial mapping defined as:

�,� ::= ∅ ∣∣ �, x:S
∣∣ �, s[p]:S

• The typing context composition �1,�2 is defined iff dom(�1) ∩ dom(�2) = ∅.
• We write � ≡ �′ iff dom(�)=dom

(
�′) and ∀c ∈ dom(�) : �(c) ≡ �′(c).

• We define �\c so that (�\c)(d) = �(d) iff d �= c (and is undefined otherwise).
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As anticipated in Section 1, a multiparty session typing context maps channels (either variables or channels with role) to 
session types, thus specifying how a channel is expected to be used. The typing context composition �1,�2 is defined iff 
the domains of �1 and �2 do not overlap.2 The notation �\c stands for the typing context defined as �, minus its entry 
for c (if present).

Multiparty session typing contexts are equipped with reduction semantics: this feature can be found in many typing 
systems for process calculi, when types abstract the behaviour of processes (for a survey, see [23]).

Definition 2.10 (Typing context reduction). The typing contexts reduction relation → is inductively defined by the following 
rules:

k ∈ I Sk ≡ Tk

s[p]:q⊕i∈Imi(Si).S ′
i , s[q]:p&i∈I∪ Jmi(Ti).T ′

i → s[p]:S ′
k, s[q]:T ′

k

[T-Comm]

k ∈ I
x:p⊕i∈I mi(Si).S ′

i → x:S ′
k

[T-x⊕]
k ∈ I

x:p&i∈I mi(Si).S ′
i → x:S ′

k

[T-x&]

�, c :S{μt.S/t} → �′

�, c :μt.S → �′ [T-μ]
� → �′

�, c :S → �′, c :S
[T-Comp]

We write →∗ to denote the reflexive and transitive closure of →.

The rules in Definition 2.10 have the following meaning:

• [T-Comm] says that two entries s[p]:Sp, s[q]:Sq can “interact”, and reduce to their continuations, provided that (1) Sp is 
a selection towards q, (2) Sq is a branching from p, and (3) the message labels of Sq are a superset of those in Sp , 
with equivalent carried types. The last clause implies that if Sp has some output message that is not supported by Sq , 
then the pair s[p]:Sp, s[q]:Sq is stuck;

• [T-x⊕] and [T-x&] says that an entry x:S (i.e., mapping a variable to a type) can reduce autonomously. These rules are a 
minor extension w.r.t. “classic” MPST papers; they will be useful later on, to define our typing system (Section 4) and 
formalise some results (Section 5.3);

• [T-μ] says that a recursive type can take part in a reduction, provided that its unfolding can induce the same reduction;
• [T-Comp] says that a reduction can occur within a larger typing context, with each additional entry c :S left unchanged.

Example 2.11. Consider the typing context:

�μ = s[p]:μt.q⊕m.t , s[q]:μt.p&m.t

By Definition 2.10, it reduces as follows (for clarity, we restore some end payloads omitted above):

end ≡ end
s[p]:q⊕m(end).μt.q⊕m.t , s[q]:p&m(end).μt.p&m.t → �μ

[T-Comm]

s[p]:q⊕m.μt.q⊕m.t , s[q]:μt.p&m.t → �μ
[T-μ]

�μ → �μ
[T-μ]

Example 2.12. Consider the types Sa , Sb , and Sc in Example 2.8, and the following typing context:

�abc = s[alice]:Sa , s[bob]:Sb , s[carol]:Sc

By Definition 2.10, �abc can reduce as follows, by rules [T-Comm] and [T-Comp]:

2 As in many MPST works, we could slightly relax the condition by allowing �1 and �2 to overlap on end-typed entries (i.e., treat such entries as 
unrestricted rather than linear). For simplicity, we treat all typing context entries in the same way. Note that this does not impact the expressiveness of the 
typed fragment of our MPST calculus: in fact, end-typed entries can be created “for free” when necessary, using session restriction.
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�abc

s[alice] : carol&m3(Bool)
s[bob] : carol⊕m2(Str)

s[carol] : Sc

s[alice] : carol&m3(Bool)
s[bob] : end

s[carol] : alice⊕m3(Bool)

s[alice] : end
s[bob] : end

s[carol] : end

s[alice] : end
s[bob] : carol⊕quit

s[carol] : Sc

In the upper part of the transition diagram, s[alice] sends m1 to s[bob], who sends m2 to s[carol], who sends m3 to 
s[alice]. In the lower part of the diagram, s[alice] sends stop to s[bob], who sends quit to s[carol]. In both cases, 
the reductions reach a final typing context configuration where all entries are end-typed.

3. “Classic” multiparty session typing system and subject reduction

In this section, we outline the “classic” multiparty session typing system, and its limitations. We reprise our claims in 
Section 1 more formally: we discuss “classic” multiparty session typing (Section 3.1), subject reduction (Section 3.2), and 
the limitations introduced by consistency (Section 3.3). Moreover, in Section 3.4, we discuss further cases of protocols that 
are “safe” but non-consistent: the fact that “classic” MPST do not cover such simple examples suggests that a more flexible 
approach is desirable.

We will provide pointers to some definitions in Appendix A, that are technically necessary in “classic” MPST theory. We 
relegate such technicalities in the appendix to make this section more readable — and also because they will not be needed 
for our new typing system in Section 4.

3.1. “Classic” multiparty session typing, global types, and projections

The “classic” multiparty session typing judgements have the form shown in Section 1, eq. (1). We repeat it here for 
clarity:

� P � � with � from Definition 2.9 (6)

which reads: “P uses its channels as described in �”.
Under the typical “top-down” approach outlined in Section 1, the typing context � usually contains multiparty session 

types that are projected from some given global type, whose syntax is formalised in Definition 3.1 below.

Definition 3.1 (Global types). The syntax of a global type G is:

G ::= p→q: {mi (Ti) . Gi}i∈I
∣∣ μt.G

∣∣ t
∣∣ end where p �= q, I �= ∅, and ∀i ∈ I : fv(Ti) = ∅

We require recursive global types to be contractive, i.e., in μt.G we have G �= t′ (∀t′). We will sometimes omit end-typed 
payloads, and trailing ends: i.e., p→q:m stands for p→q:m(end) . end.

We explain Definition 3.1 with an example. Consider the global type G below:

G = alice→bob:
{
m1(Int) . bob→carol:m2(Str) . carol→alice:m3(Bool) . end ,

stop . bob→carol:quit . end

}
(7)

The global type G involves three roles: alice, bob, and carol. It says that alice sends to bob either a message m1
(carrying an Integer) or stop; in the first case, bob sends m2 to carol (carrying a String), then carol sends m3 to 
alice (carrying a Boolean), and the session ends; otherwise, in the second case, bob sends quit to carol, and the 
session ends.

The projections of G (Definition A.1) describe the I/O actions expected from processes that play the roles in G . When G is 
projected onto alice, bob and carol, it yields respectively the types Sa , Sb and Sc shown in Example 2.8. Such types 
can be used in the typing judgement (6), in combination with the processes in Example 2.3, to yield a typing derivation 
similar to the following:
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...

� Pa � s[alice]:Sa

...

� Pb � s[bob]:Sb
� Pa | Pb � s[alice]:Sa, s[bob]:Sb

[Std-|]
...

� Pc � s[carol]:Sc
� Pa | Pb | Pc � s[alice]:Sa, s[bob]:Sb, s[carol]:Sc

[Std-|]
(8)

This derivation says that the parallel composition of processes Pa | Pb | Pc uses the channels with role s[alice], s[bob], 
and s[carol] respectively according to types Sa , Sb , and Sc . Notice that Pa | Pb | Pc is typed by rule [Std-|], that splits the 
typing context in the conclusion so that a channel with role is not used by two parallel sub-processes in its premises. This 
kind of context splitting implies that channels are used linearly, i.e., by one process a time, and cannot be shared.

In the omitted part of the derivation (8), the sub-processes Pa , Pb , and Pc are typed: this means, in particular, that 
they use respectively the channel with role s[alice], s[bob], and s[carol] abiding by types Sa , Sb , and Sc . Hence, we 
know that the processes in Example 2.3 respect the local session types in Example 2.8, and thus, play the roles of the global 
type G in (7).

Inter-role dependencies Observing the processes in Example 2.3, we can notice that Pa sends stop to bob, and then 
terminates without receiving messages from carol. Indeed, this is what we expect from the type Sa in (5): Pa must input 
a message from carol if and only if it decides to send m1 (instead of stop) to bob. However, if we observe the process 
Pc , we see that it could potentially try to send m3 to alice — and this should be regarded as an error, because Pa would 
not be expecting such a message. Fortunately, this does not occur: by observing the whole ensemble Pa | Pb | Pc , we can 
see that when Pb receives stop from Pb , it “forwards” quit to carol (as per Sb); and when Pc receives quit from 
bob, it does not try to communicate again with alice (as per Sc). Intuitively, we can say that the process Pa “assumes” 
that by following the type Sa , and thus sending a certain message to the process playing role bob, it will also influence 
the behaviour of the process playing carol. This is a case of implicit inter-role communication dependency, that can be more 
explicitly observed in the global type G .

3.2. Subject reduction and consistency

Multiparty session typing ensures that processes enjoy properties such as protocol conformance (i.e., all sent/received 
messages comply with the session types, and ultimately with their originating global type G), and type safety (i.e., typed 
processes “never go wrong”).

As in most typing systems, type safety for MPST π -calculus processes is based on the subject reduction property: it 
guarantees that typed processes can only reduce to typed processes, and therefore, no untypable configurations can be 
reached. Among such untypable configurations there are, e.g., the undesired cases where a process is willing to send a 
message that is not supported by the intended recipient — as in the hypothetical error involving Pa and Pb discussed 
above. Hence, one might expect that the subject reduction theorem for MPST has a statement similar to:

� P � � and P →∗ P ′ implies ∃�′ such that � →∗ �′ and � P ′ � �′ (9)

Then, one might also expect that the subject reduction statement in (9) can ensure type safety for our typed example 
in (8), by letting P = Pa | Pb | Pc and � = s[alice]:Sa, s[bob]:Sb, s[carol]:Sc . But quite surprisingly, this is not the case! 
The reason is that (9) is not quite accurate: it does not hold for all processes typed by any arbitrary �, as illustrated in 
Example 3.2.

Example 3.2. In “classic” MPST, an arbitrary typing context can type arguably incorrect processes. For example, we have:

� s[p][q]⊕m�〈s[r]〉 | s[q][p]∑m�(x) � s[p]:q⊕m1(end) , s[q]:p&m2(end) , s[r]:end (m� �= m�) (10)

Note that the typed processes in (10) are willing to interact, but are stuck (by Definition 2.4). Eq. (10) can be considered an 
error configuration, where a process expecting m1 receives an unsupported message m2.

Another problematic example can be shown using ground types and expressions, e.g., as in [11, p. 163]:

� s[p][q]⊕m〈"Hi"〉.s[p][q]∑m(y) | s[q][p]∑m(x).s[q][p]⊕m〈x + 42〉 � s[p]: q⊕m(Str).q&m(Int) ,

s[q]: p&m(Int).p⊕m(Int)
(11)

By Definition 2.4, the process in (11) reduces to s[p][q]∑m(y) | s[q][p]⊕m〈"Hi"+ 42〉, which is clearly untypable. This 
disproves the tentative subject reduction statement in (9).

To avoid the scenarios described in Example 3.2, in “classic” MPST works (e.g., by Coppo et al. [11]), the subject reduction 
statement is more restrictive, and reads:

� P � � with � consistent and ; P →∗ P ′ implies ∃�′ consistent such that �→∗�′ and � P ′ � �′ (12)

i.e., subject reduction is only proved for consistent (sometimes called coherent) typing contexts, as per Definition 3.3 below.
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Definition 3.3 (Consistency). We say that � is consistent, written consistent(�), iff ∀�′, s, p, q, S, T : � = �′, s[p]:S, s[q]:T
implies S�q� T �p.

Checking whether Definition 3.3 holds for some typing context � is quite cumbersome, as it requires to:

(1) take each pair of channels with role in � belonging to the same session s — say, having roles p and q, and mapping 
respectively to session types S and T ;

(2) further project S and T onto the “opposite” role of the pair (Definition A.4) — i.e., project S onto q and T onto p. The 
outcome of such projections are partial session types (Definition A.2), similar to binary session types, and only describing 
the interactions between p and q;

(3) check that such projected partial types are dual (Definition A.3) — modulo partial session subtyping � (Definition A.5).

These complications have a payoff: consistency ensures that all possible interactions between pairs of roles in a mul-
tiparty session are “correct,” and avoids situations like Example 3.2 above; in fact, the typing contexts in (10) and (11)
are not consistent, because their partial type projections yield non-dual input/output message labels or payloads, violating 
Definition 3.3.

3.3. Limitations of consistency

Unfortunately, the consistency-based approach outlined above has a drawback: it is very restrictive, and does not hold for 
many “intuitively correct” processes — especially when they implement protocols with inter-role dependencies. For instance, 
the processes in Example 2.3 are “intuitively correct”, since they interact smoothly until they terminate, as shown in Exam-
ple 2.5. However, as shown in (8), they are only typable under a typing context � = s[alice]:Sa, s[bob]:Sb, s[carol]:Sc
that is not consistent, as explained in Example 3.4 below.

Example 3.4. Take Sa , Sb , Sc from Example 2.8, and � = s[alice]:Sa, s[bob]:Sb, s[carol]:Sc . By Definition 3.3, in order 
to check whether � is consistent we need to compute the partial projections of all types (using Definition A.4), and check 
their duality. For example, we have the following partial projections:

Sa�bob= ⊕{m1(Int) , stop} Sb�alice= &{m1(Int) , stop}
and we also get Sa�bob = Sb�alice — i.e., the projections are dual (Definition A.3), because the inputs/outputs of one 
match the outputs/inputs of the other. This means that, by Definition 3.3, the pair s[alice]:Sa, s[bob]:Sb is consistent.

However, the following projections (also required by Definition 3.3) are not defined:

Sa�carol = carol&m3(Bool)�carol � end�carol = &m3(Bool) � end (undefined)
Sc�alice = alice⊕m3(Bool)�alice � end�alice = ⊕m3(Bool) � end (undefined)

(13)

because (by Definition A.4) they use the partial types merging operator � in a case where it is not defined.
Therefore, the pair s[alice]:Sa, s[carol]:Sc is not consistent; hence, by Definition 3.3, we conclude that the typing 

context � is not consistent.

In Example 3.4, the partial projection Sa�carol (resp. Sc�alice) is undefined because the session type Sa (resp. Sc) 
starts with an interaction with bob; as a consequence, in order to project the type onto carol (resp. alice), it is 
necessary to:

(1) “skip” the interaction with bob,
(2) take all possible continuations and project each one onto carol (resp. alice), and
(3) merge such projected continuations, with the operator � (Definition A.4) that tries to combine them into a single partial 

type.

The merge operator between partial types is quite restrictive: it does not allow to combine a branching (resp. selection) 
type with end, as shown in (13). This means that the interaction between alice (resp. carol) and bob can only have a 
limited influence on the interactions between alice (resp. carol) and other roles. This curtails the variety of inter-role 
dependencies supported by the “classic” MPST theory.

The consequence of this limitation is that the subject reduction statement in (12) is vacuously true for the typed process 
P = Pa | Pb | Pc from Example 2.3. Therefore, we cannot use (12) to formally prove that Pa | Pb | Pc reduce in a type-safe 
way. Further limitations arise for recursive protocols: we illustrate them in Section 3.4 below.
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3.4. More “correct” but non-consistent examples

We now describe more cases of “correct” choreographies that, when projected, yield typing contexts that are not consis-
tent according to Definition 3.3. As a consequence, the “classic” MPST theory does not provide subject reduction guarantees 
for processes that implement such choreographies.

Note that all the following examples will be supported by our theory, presented in Section 4: in fact, they all yield live
typing contexts (Definition 4.1) that can type processes enjoying subject reduction (Theorem 4.9).

3.4.1. Consistency vs. history-dependent branching
In Example 3.4, consistency does not hold because the partial projections Sa�carol and Sc�alice are undefined, due 

to the non-mergeability of internal/external choice and end (as per Definition A.4). We now try to “adjust” G in (7) and 
make it consistent, by adding another communication between carol and alice:

G ′ = alice→bob:
{
m1(Int) . bob→carol:m2(Str) . carol→alice:m3(Bool) . end ,

stop . bob→carol:quit . carol→alice:m4(Int) . end

}
The projections of G ′ onto alice, bob and carol are respectively:

S ′
a = bob⊕

{
m1(Int) . carol&m3(Bool) ,

stop . carol&m4(Int)

}
S ′
b = alice&

{
m1(Int) . carol⊕m2(Str) ,

stop . carol⊕quit
}

S ′
c = bob&

{
m2(Str) . alice⊕m3(Bool) ,

quit . alice⊕m4(Int)

}
Let us now examine the partial projections S ′

a�carol and S ′
c�alice:

S ′
a�carol = carol&m3(Bool)�carol � carol&m4(Int)�carol = &m3(Bool) � &m4(Int) (undefined)

S ′
c�alice = alice⊕m3(Bool)�alice � alice⊕m4(Int)�alice = ⊕m3(Bool) � ⊕m4(Int) = ⊕{m3(Bool) , m4(Int)}

Unfortunately, partial type merging does not allow to combine different external choices, thus making S ′
a�carol undefined. 

Hence, external choices cannot depend on the outcome of previous interactions with other roles: i.e., alice cannot wait 
for different messages from carol, depending on the interaction between alice and bob. Still, different internal choices 
can be merged: e.g., carol can send a different message to alice, depending on the previous interaction between carol
and bob: for this reason, S ′

c�alice is defined.

3.4.2. Consistency vs. recursion
Consider the following global type:

G ′′ = μt.alice→bob:
{
m1(Int) . bob→carol:m2(Str) . carol→alice:m3(Bool) . t ,

stop . bob→carol:quit . carol→alice:m3(Bool) . end

}
The global type G ′′ above is again similar to G in (7) — but now, if alice sends m1(Int) to bob, the choreography loops: 
in fact, bob then sends m2(Str) to carol, which sends m3(Bool) to alice, that continues recursively. Instead, if alice
chooses to send stop to bob, the latter notifies quit to carol, which sends m3(Bool) to alice, and the choreography 
ends. The projections of G ′′ onto alice, bob and carol are respectively:

S ′′
a = μt.bob⊕

{
m1(Int).carol&m3(Bool).t ,

stop.carol&m3(Bool).end

}
S ′′
b = μt.alice&

{
m1(Int).carol⊕m2(Str).t ,

stop.carol⊕quit.end

}
S ′′
c = μt.bob&

{
m2(Str).alice⊕m3(Bool).t ,

quit.alice⊕m3(Bool).end

}
Note that in all cases, carol sends to alice the message m3(Bool): this circumvents the merging problems described 

in Example 3.4 and Section 3.4.1. However, we stumble into another roadblock:

S ′′
a�carol = μt.((carol&m3(Bool) . t)�carol � (carol&m3(Bool) . end)�carol)

= μt.(&m3(Bool) . (t � end)) (undefined)

S ′′
c�alice = μt.((alice⊕m3(Bool) . t)�alice � (alice⊕m3(Bool) . end)�alice)

= μt.(⊕m3(Bool) . (t � end)) (undefined)

This is another case of (unsupported) inter-role dependency: in S ′′
a (resp. S ′′

c), the interaction with bob determines whether, 
after receiving (resp. sending) m3(Bool) from carol (resp. to alice), the type will (a) loop on t, and thus, keep interacting 
with carol (resp. alice), or (b) end the session. Hence, the partial projection S ′′

a�carol (resp. S ′′
c�alice) tries to merge 

t (from case (a)) with end (from case (b)) — but the operation is undefined.
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4. Multiparty session typing, beyond duality and consistency

We now introduce our new multiparty session typing system. Following the discussion in Section 3, our goal is to replace 
consistency with a more flexible typing context property that avoids the issues in Example 3.2, but supports protocols with 
complex inter-role dependencies. Our key idea is to avoid the “loss of contextual information” discussed in Section 1, by 
introducing a new rely/guarantee typing judgement.

In Section 4.1, we define a behavioural liveness invariant used by our novel typing system, that is presented in Section 4.2; 
then, in Section 4.3, we formalise and discuss its type safety guarantees.

4.1. Liveness

In order to replace consistency, we need an alternative typing context property that still allows to prove subject reduc-
tion. Technically, this means that the new property must satisfy the following requirements:

(R1) it must ensure that the typing context is “safe” (e.g., if the type of s′[r] sends a message to r′ , then the type of s′[r′]
can input such a message from r), thus avoiding cases like Example 3.2;

(R2) it must be preserved when typed processes communicate and reduce; and
(R3) it must be preserved when typing contexts are (de)composed by parallel composition (see [Std-|] in (8)).

To address requirements (R1) and (R2), we introduce a coinductive notion of typing context liveness (Definition 4.1). It is 
based on the reductions of typing contexts (Definition 2.10), and ensures that each selection is matched by a compatible 
branching, and each branching can be triggered by a compatible selection. We will address requirement (R3) later on, with 
our liveness-based typing system (Section 4.2).

Definition 4.1 (Liveness). The predicate live(�) (read “� is live”) is the largest predicate such that:

• [L-&] live(�, s[p]:S) with S = q&i∈Imi(Si).S ′
i implies ∃i ∈ I : ∃�′ : �, s[p]:S →∗ �′, s[p]:S ′

i ;• [L-⊕] live(�, s[p]:S) with S = q⊕i∈Imi(Si).S ′
i implies ∀i ∈ I : ∃�′ : �, s[p]:S →∗ �′, s[p]:S ′

i ;
• [L-μ] live(�, s[p]:μt.S) implies live(�, s[p]:S{μt.S/t}) ;
• [L-→] live(�) and � → �′ implies live(�′) .

The crucial difference between liveness and consistency (Definition 3.3) is that the former is a behavioural property, and 
does not depend on syntactic projections and duality checks. If a typing context �, s[p]:S is live, then:

• [L-&] says that if S is an external choice, then � must be able to reduce until some branch of S is triggered;
• [L-⊕] says that if S is an internal choice, then � must be able to reduce allowing to send each message of S;
• [L-μ] says that if S is recursive, then its unfolding must be live, too. This means that liveness inspects all step-by-step 

unfoldings of S , until the first non-recursive subterm is exposed,3 and thus checked by clause [L-⊕]/[L-&];
• [L-→] says that if the typing context reduces, the reduct must be live, too.

Example 4.2. Consider the typing context �μ from Example 2.11. We have live(�μ). In fact, consider the following predi-
cate, containing �μ and its unfoldings:

P =

⎧⎪⎪⎨⎪⎪⎩
�μ ,

(s[p]:q⊕m.μt.q⊕m.t , s[q]:μt.p&m.t) ,

(s[p]:μt.q⊕m.t , s[q]:p&m.μt.p&m.t) ,

(s[p]:q⊕μt.q⊕m.t , s[q]:p&m.μt.p&m.t)

⎫⎪⎪⎬⎪⎪⎭
By inspecting each � ∈ P, we can verify that it satisfies the coinductive clauses of Definition 4.1:

• each � ∈ P reduces to �μ , that belongs to P — thus satisfying clause [L-→];
• if � = �′, s[r]:μt.S (for some r), then �′, s[r]:S{μt.S/t} belongs to P — thus satisfying clause [L-μ];
• if some type in � exposes an internal/external choice, then it can be eventually triggered by the rest of the context 

(see Example 2.11) — thus satisfying clause [L-⊕]/[L-&].

Now, by Definition 4.1, live is the largest predicate satisfying such clauses, and therefore we have that � ∈ P implies live(�). 
Then, since �μ ∈ P, we conclude live(�μ).

3 Recall that session types are contractive, by Definition 2.6: hence, the unfolding of a sequence of nested recursions μt1.μt2.. . . must eventually yield a 
type with a top-level internal/external choice, or end.
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∀c ∈ dom(�) : �(c) ≡ end

end(�)
[T-End]

� ≡ c :S
� � c :S

[T-Chan]

�(X) ≡ S1, . . . , Sn

� � X : S1, . . . , Sn
[T-Proc]

end(�)

� � 0 � � � �
[T-0]

�, X :S1, . . . , Sn � P � x1 :S1, . . . , xn :Sn � ∅ �, X :S1, . . . , Sn � Q � � � �

� � def X(x1, . . . , xn) = P in Q � � � �
[T-def]

� � X : S1, . . . , Sn end(�0) ∀i ∈ 1..n �i � ci :Si

� � X〈c1, . . . , cn〉 � �0,�1, . . . ,�n � �
[T-X]

�s = {
s[p]:Sp

}
p∈I � � P � �,�s � �

� � (νs:�s) P � � � �
[T-ν]

� � P1 � �1 � �,�2 � � P2 � �2 � �,�1

� � P1 | P2 � �1,�2 � �
[T-|]

S ≡ q&i∈Imi(Si).S ′
i ∀i ∈ I ∀�′, �′′ : � →∗ �′ and �′, c :S → �′′, c :S ′

i � � Pi � �, yi :Si , c :S ′
i � �′′

� � c[q]∑i∈I∪ J {mi (yi).Pi} � �, c :S � �
[T-&]

S ≡ q⊕i∈Imi(Si).S ′
i ∃k ∈ I �d � d:Sk ∀�′,�′′ : � →∗ �′ and �′, c :S → �′′, c :S ′

k � � P � �, c :S ′
k � �′′,�d

� � c[q]⊕mk〈d〉.P � �d,�, c :S � �
[T-⊕]

Fig. 3. Rely/guarantee multiparty session typing system.

Example 4.3. Consider �abc from Example 2.12, and the following predicate, containing �abc and all its reducts:

P = {
�′ ∣∣ �abc →∗ �′}

We can verify that each element of P satisfies clauses [L-→], [L-&], [L-⊕] and [L-μ] of Definition 4.1 (possibly vacuously). Hence, 
similarly to Example 4.2, we conclude live(�abc).

Notably, a live typing context never deadlocks: i.e., if it cannot further reduce, then all its entries must be end-typed. The 
vice versa is not true: a deadlock-free typing context might not be live. Moreover, liveness and consistency are incomparable, 
i.e., neither implies the other. This is shown in Example 4.4 below.

Example 4.4. The typing context s[p]:Sa, s[q]:Sb, s[r]:Sc in (8) is live, but not consistent.
The context s[p]:q&m1 .r⊕m3, s[q]:r&m2 .p⊕m1, s[r]:p&m3 .q⊕m2 is consistent but not live (nor deadlock-free): its in-

puts/outputs occur in the wrong order, thus preventing reductions.
Finally, the typing context s[p]:μt.q⊕m1 .t, s[q]:μt.p&m1 .t, s[r]:p&m2 is deadlock-free and consistent, but not live: s[p]

and s[q] generate infinite reductions, but s[r] cannot possibly perform its input (thus violating clause [L-&] of Definition 4.1).

4.2. A rely/guarantee typing system for multiparty sessions

We can now introduce our new typing system.

Definition 4.5 (Rely/guarantee typing system). Let � be a partial mapping defined as:

� ::= ∅ ∣∣ �, X :̃S
A rely/guarantee multiparty session typing judgement has the form:

� � P � � � � with live(�,�)

and is inductively defined by the rules in Fig. 3. Above, � and � are called respectively guarantee and rely contexts.

In Definition 4.5, similarly to most MPST works, � assigns an n-uple of types to each process variable X (one type 
per argument). Intuitively, the judgement � � P � � � � says: given the process definitions typed in �, P “guarantees” to 
use its channels linearly according to �, by “relying” on the assumption that other processes use their channels according 
to �. The additional � is the most visible departure from standard MPST typing rules (although we subsume them under 
some conditions, as we will show in Section 5.3). Note that the requirement live(�,�) implies that �,� must be defined: 
therefore, by Definition 2.9, we must have dom(�) ∩ dom(�) = ∅.

In Fig. 3, the first three rules define auxiliary judgements:

• [T-End] says that end(�) holds if all entries of � are end-typed;
• [T-Chan] says that the judgement � � c :S (read “c has type S in �”) holds if � contains exactly one entry c :S ′ , with 

S ′ ≡ S . Note that this judgement allows to consider S ′ up-to unfolding: this makes the typing system equi-recursive [31, 
Chapter 21];

• [T-Proc] says that the judgement � � X : S1, . . . , Sn (read “process X has parameter types S1, . . . , Sn in �”) holds if � maps 
X to an n-uple of types equivalent to S1, . . . , Sn (again, up-to unfolding).
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The remaining typing rules are the core of the typing system:

• [T-0] says that 0 is typed if all channels in � are end-typed;
• [T-def] says that def X (̃x) = P in Q is typed if P uses the arguments x1, . . . , xn according to S1, . . . , Sn (with empty rely 

context), and the latter n-uple types the parameters of X when typing Q ;
• [T-X ] says that X 〈̃c〉 is typed if the types of ̃c match those of the formal parameters of X , and any unused channel (in 

�0) is end-typed;
• [T-ν] says that (νs) P is typed if P can be typed by adding �s (that annotates s, and only has s-based entries) to �. 

Note that by Definition 4.5, we have live(�,�) in the conclusion of the rule, and � � P � �,�s � � in its premise: as a 
consequence, the rule also implies live(�s) (Lemma C.4);

• [T-|] says that P1 | P2 is typed by splitting the guarantee context in the premises (similarly to [Std-|] in (8)) — and 
crucially, by recording the “lost” information in the rely context. Hence, P1 is typed by relying on the guarantees of P2, 
and vice versa: this allows the typing rules to preserve liveness across a typing derivation;

• [T-&] says that c[q]∑i∈I∪ J {mi (yi).Pi} is typed if c has type S , where S is a (possibly recursive) external choice from q, 
with message labels mi (where i ∈ I). As usual in MPST works, the process can have more branches than type S : i.e., it 
can support additional message labels mj with j ∈ J , and they are immaterial for typing. Furthermore, the rule checks 
that if � reduces to �′′ while moving c :S to c :S ′

i (for any i ∈ I), then c :S ′
i and �′′ must type the continuation Pi , with 

the received channel yi :Si added to the guarantee context — i.e., Pi must use it correctly;
• [T-⊕] says that c[q]⊕mk〈d〉.P is typed if c has type S , where S is a (possibly recursive) internal choice towards q, whose 

message labels include mk . Furthermore, if � reduces to �′′ while moving c :S to c :S ′
k , then c :S ′

k and �′′ must type the 
continuation P — but with the sent channel d:Sk now transferred into the rely context: i.e., after sending d, P cannot 
use it, but relies on its correct usage by the recipient.

Remark 4.6. The number of premises of the typing rules [T-&] and [T-⊕] is always finite: this is because, by Definition 2.10, 
the relation → induces finite-state transition systems, and thus, quantifications like “∀�′ : � →∗ �′ . . .” can yield only a finite 
set of reducts — and correspondingly, a finite number of premises to check. We will revisit this topic in Section 5.3.

Example 4.7. We now revise the typing derivation (8) in Section 3 using our new rely/guarantee typing rules from Defini-
tion 4.5 (here, we abbreviate alice, bob, and carol respectively as a, b, and c):

� = s[a]:Sa, s[b]:Sb, s[c]:Sc

D

{
...

∅ � Pa � s[a]:Sa � s[b]:Sb, s[c]:Sc

...

∅ � Pb � s[b]:Sb � s[a]:Sa, s[c]:Sc

∅ � Pa | Pb � s[a]:Sa, s[b]:Sb � s[c]:Sc
[T-|]

...

∅ � Pc � s[c]:Sc � s[a]:Sa, s[b]:Sb
∅ � Pa | Pb | Pc � s[a]:Sa, s[b]:Sb, s[c]:Sc � ∅ [T-|]

∅ � (νs:�)(Pa | Pb | Pc) � ∅ � ∅ [T-ν]

We have live(�) (see Example 4.3), and each application of [T-|] propagates the entries of � in its premises’ guarantee/rely 

contexts, throughout the derivation. Now, consider the sub-derivation D (top left):

D

⎧⎨⎩ Sa ≡ b⊕
{
m1(Int) . c&m3(Bool) ,

stop . end

}
s[b]:Sb, s[c]:Sc,
s[a]:Sa

→ s[b]:c⊕quit, s[c]:Sc,
s[a]:end

end(s[a]:end)

∅ � 0 � s[a]:end � s[b]:c⊕quit, s[c]:Sc
[T-0]

∅ � s[a][b]⊕stop.0 � s[a]:Sa � s[b]:Sb, s[c]:Sc
[T-⊕]

Here, the rely context s[b]:Sb, s[c]:Sc cannot reduce (i.e., in [T-⊕] in Fig. 3, we have �′ = �). By composing it with s[a]:Sa , 
and following the stop reduction as in Example 2.12 (thus matching the output stop in the process), we get the new 
rely context s[b]:c⊕quit, s[c]:Sc: by [T-⊕], it must type the continuation 0. Observe that in the instance of [T-0], the rely 
context never interacts with s[a], although a occurs in Sc: this captures the inter-role dependency discussed in Sections 1
and 3.

4.3. Subject reduction

Our typing rules satisfy the Substitution Lemma 4.8 below: if P is typed with an S-typed variable x, and its rely context �

contains an S-typed channel with role s[p], then P {s[p]/x} can be typed by (1) removing the entry for s[p] from the rely 
context, and (2) using it in place of x in the guarantee context. Crucially, by moving s[p] between the two contexts, we 
preserve the liveness before and after the substitution (as required by Definition 4.5).

Lemma 4.8 (Substitution). If �� P ��, x:S��,�′ and ��s[p]:S, then � � P {s[p]/x} � �, s[p]:S � �′ .

Proof. See Appendix E. �
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Using Lemma 4.8, we prove the Subject Reduction Theorem 4.9 below. Note that its statement is similar to the (tentative) 
statement (9) in Section 3, but without the counterexamples shown in Example 3.2: this is because in Definition 4.5, we 
“embed” the liveness requirement in the typing judgement, so that Theorem 4.9 holds for all typed processes (as one might 
usually expect).

Theorem 4.9 (Subject reduction). If � � P � � � � and P →∗ P ′ , then ∃�′ such that � →∗ �′ and � � P ′ � �′ � �.

Proof. See Appendix F. The proof crucially exploits the fact that, in our rely/guarantee typing system, liveness satisfies the 
requirements (R1)–(R3) outlined in Section 4.1. �
5. Comparison: rely/guarantee vs. “classic” multiparty session typing

In this section, we compare our new rely/guarantee multiparty session typing system with the “classic” MPST theory. In 
Example 4.4, we have shown that liveness and consistency are incomparable; therefore:

1. on the one hand, using our theory we can prove type safety in cases that are not covered in “classic” MPST, as shown 
in Example 4.7;

2. but on the other hand, the “classic” MPST subject reduction statement in (12) allows to prove type safety for processes 
that would be rejected by our theory, because their typing context is consistent but not live (see Example 4.4).

Regarding item 2, it is important to notice that if a consistent typing context � is not live, then (by Definition 4.1) it 
contains some internal/external choice that can be reached but never fired; therefore, � types processes that might wait 
forever on some output/input that cannot be possibly triggered by another process (see Example 4.4). For this reason, we 
argue that non-live typing contexts should be considered ill-formed, and can be reasonably rejected. Indeed, in “classic” 
MPST, well-formed global types and projections are used to rule out this kind of ill-formed protocols.

We now further investigate the differences between or new theory and the “classic” one. In Section 5.1, we show that our 
typing system supports all multiparty protocols projected from some global type, plus other “live” protocols that cannot be 
projected from any global type; in Section 5.2, we show that our typing system tolerates some (safe) mismatches between 
processes and types; finally, in Section 5.3, we show how our typing rules can be simplified (in some cases) to match the 
“classic” ones.

5.1. Global types, and beyond

Our theory covers all typing contexts obtained by projecting some global type G . This is implied by Lemma 5.1 below — 
where roles(G) is the set of roles occurring in G .

Lemma 5.1. Take any global type G, and let �G = {s[r]:Sr}r∈roles(G) such that ∀r ∈ roles(G) : Sr = G�r. Then, we have live(�G).

Proof. (Sketch) This is a consequence of the correspondence between multiparty session types and Communicating Finite-
State Machines (CFSMs) [8], originally established by Deniélou and Yoshida [14], and later reprised by Bocchi et al. [6].

Deniélou and Yoshida [14] define the projection of a global type G onto a system of CFSMs (one per role of G), that we 
denote here as SG . The projection corresponds to the usual global-to-local type projection (Definition A.1), and generates 
restricted CFSMs whose states are non-mixed and directed — i.e., each state q is either an input state (with receive transitions, 
only) or an output state (with send transitions, only), and each transition from q is an input/output from/to the same 
participant. With these restrictions, each CFSM in SG corresponds to a local multiparty session type (Definition 2.6), and 
the system SG is homomorphic to the projected typing context �G (since it contains the same projected session types).

Then, by Theorem 4.3 in Deniélou and Yoshida [14], we know that SG is Multiparty Compatible (MC) ([14, Def. 4.2]; [6, 
Def. 4]). In our setting, MC (with the formulation of Bocchi et al. [6]) can be translated as follows:

(MC1) �G →∗ �′, s[p]:S with S ≡ q&i∈Imi(Si).S ′
i implies ∃k ∈ I: ∃�′′, �′′′: �′ →∗ �′′ and �′′, s[p]:S → �′′′, s[p]:S ′

k;
(MC2) �G →∗ �′, s[p]:S with S ≡ q⊕i∈Imi(Si).S ′

i implies ∀k ∈ I: ∃�′′, �′′′: �′ →∗ �′′ and �′′, s[p]:S → �′′′, s[p]:S ′
k .

Clause (MC1) says that whenever �G reduces to a configuration with a type/CFSM for p that inputs from q, then it can 
eventually receive a corresponding message from q. Clause (MC2) says that whenever �G reduces to a configuration with a 
type/CFSM for p that outputs some message towards q, then the message can be eventually received by q. Besides the use 
of session types instead of non-mixed and directed CFSMs, the above translation of MC has two differences w.r.t. Deniélou 
and Yoshida [14] and Bocchi et al. [6]:

1. our typing context reductions (Definition 2.10) are synchronous. Instead, Deniélou and Yoshida [14] and Bocchi et al. [6]
have asynchronous communication via message queues. Still, MC is based on a notion of synchronous reduction: it only 
considers restricted pairs of “alternating” transitions where each message is first queued, and then received, without 
other transitions in between;
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2. our typing context reductions (Definition 2.10) compare both message labels and message payloads — and the latter are 
compared with the up-to unfolding equivalence ≡ (Definition 2.6). Instead, Deniélou and Yoshida [14] and Bocchi et al. 
[6] do not have payloads, and use CFSM transitions that only compare message labels. Still, extending CFSMs to support 
and compare message payloads with the same treatment of Definition 2.10 is not difficult, and has no consequence on 
MC and its properties.

Now, summing up: if we have �G defined as in the hypotheses, by Deniélou and Yoshida [14] and Bocchi et al. [6] we 
know that �G satisfies clauses (MC1) and (MC2) above. Then, we can show that �G is live: it suffices to define a predicate P
containing �G and its reducts and unfoldings (similarly to Examples 4.2 and 4.3), and show that each element of P satisfies 
the clauses of Definition 4.1; in particular, clause [L-&] holds by (MC1), and [L-⊕] holds by (MC2). Hence the result. �

Lemma 5.1 means that our typing judgement (Definition 4.5) supports all multiparty protocols typically considered in 
“classic” MPST theory. Moreover, for all typed processes, it provides a subject reduction result that is not restricted by 
consistency (Theorem 4.9): this is not the case in “classic” MPST, as discussed in Section 3.3.

Additionally, our rely/guarantee typing system goes beyond global types: in Examples 5.2 and 5.3 below, we show two 
typing contexts that are live (and thus supported by our theory), but cannot be obtained by projecting any global type.

Example 5.2. Consider the following typing context (that is not consistent):

� = s[p]:μt.q⊕{m1 .t , m2} , s[q]:μt.p&{m1 .t , m2 .r⊕m3} , s[r]:q&m3

It reduces as follows:

�

s[p] : end
s[q] :r⊕m3
s[r] :q&m3

s[p] : end
s[q] : end
s[r] : end

In this diagram, � loops when s[p] sends m1 to s[q]; otherwise, if s[p] sends m2 to s[q], then s[q] sends m3 to s[r], and 
the final configuration is reached. By inspecting these reductions, we can verify that � is live.

However, � is not projectable from any global type. In fact, observe that the type of s[q] recursively waits to receive 
either m1 or m2 from p, and only in the second case, s[q] sends m3 to r. This means that an hypothetical G projecting into 
� should look like G = μt.p→q: {m1 . t , m2 . q→r:m3}, i.e., the global type syntactically involves role r in one branch, but 
not in the other — and this makes the projection G�r undefined (see Definition A.1).

Example 5.3. Consider the following typing context:

�′
μ = s[p]:S , s[q]:μt′.p&m(S).t′ where S = μt.q⊕m(t).t

Here, S is the type of a channel that must be used to recursively send a message m to a process playing role q; moreover, 
m carries an S-typed payload channel that the recipient must use accordingly.

Note that �′
μ is not projectable from any global type, because projection (Definition A.1) cannot yield session types 

with recursion variables occurring as payloads. Moreover, �′
μ is not consistent: the projection S�q= μt′.⊕m(t).t′ yields an 

invalid partial type, with an open session type as message payload (Definition A.2).
By Definition 2.10, �′

μ reduces as follows:

S ≡ S
s[p]:q⊕m(S).S , s[q]:p&m(S).μt′.p&m(S).t′ → �′

μ

[T-Comm]

s[p]:q⊕m(S).S , s[q]:μt′.p&m(S).t′ → �′
μ

[T-μ]

�′
μ → �′

μ

[T-μ]

and we can prove live(�′
μ) similarly to Example 4.2, by (1) defining a predicate P containing �′

μ and its unfoldings, and 
(2) showing that the elements of P satisfy the clauses of Definition 4.1.

Note that in our rely/guarantee session typing theory, the following judgement holds:

∅ � Qp | Qq � �′
μ � ∅ where :

Qp = def X(x) =
(

def Z(z) = z[p]∑{
m(x′).(Z〈z〉 | X

〈
x′〉)}

in
((

νs′) (
x[q]⊕m〈s′[p]〉. X〈x〉 | Z

〈
s′[q]〉))

)
in X〈s[p]〉

Qq = def Z(z) =
(

def X(x) = ((
νs′) (

x[q]⊕m〈s′[p]〉. X〈x〉 | Z
〈
s′[q]〉))

in z[p]∑{m(x).(Z〈z〉 | X〈x〉)}
)

in Z〈s[p]〉
and therefore, by Theorem 4.9, we know that Qp | Qq interact type-safely.
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Remark 5.4. Example 5.3 shows that by using liveness, our rely/guarantee typing system does not incur in the limitations 
of duality applied to recursive types, that have been variously addressed in several works. We will reprise this topic in 
Section 6.

5.2. Leveraging typing context reductions

Unlike “classic” MPST typing systems, our rules [T-&] and [T-⊕] (Fig. 3) inspect typing context reductions. This adds a 
certain flexibility: the contextual information can be exploited to type processes in ways that would be forbidden in “classic” 
MPST, as shown in Example 5.5 below.

Example 5.5. Consider the following variation of the session types in Example 2.8:

S ′
a = bob⊕stop . end S ′

b = alice&

{
m1(Int) . alice⊕m2(Str) . end ,

stop . carol⊕quit . end

}
S ′
c = bob&

{
m2(Str) . end ,

quit . end

}
The differences with Example 2.8 are:

1. S ′
a must send stop to bob, and has no other choice;

2. if S ′
b receives m1 from alice, then it sends m2 to alice (instead of carol);

3. if S ′
c receives m2 from bob, then it terminates without sending m3 to alice.

Note that the typing context s[alice]:S ′
a, s[bob]:S ′

b, s[carol]:S ′
c is live, because the mismatching outputs in the altered 

branches of S ′
b and S ′

c are never reached, and therefore, do not violate clauses [L-&] and [L-⊕] of Definition 4.1.
Now, consider the processes in Example 2.3: with the variations 1–3 above, the process Pa still matches S ′

a , but Pb and 
Pc do not match S ′

b and S ′
c . Nonetheless, the following typing derivation holds (here, we abbreviate alice, bob, carol

resp. as a, b, c):

�′ = s[a]:S ′
a, s[b]:S ′

b, s[c]:S ′
c

...

∅ � Pa � s[a]:S ′
a � s[b]:S ′

b, s[c]:S ′
c

...

∅ � Pb � s[b]:S ′
b � s[a]:S ′

a, s[c]:S ′
c

∅ � Pa | Pb � s[a]:S ′
a, s[b]:S ′

b � s[c]:S ′
c

[T-|]
...

∅ � Pc � s[c]:S ′
c � s[a]:S ′

a, s[b]:S ′
b

∅ � Pa | Pb | Pc � s[a]:S ′
a, s[b]:S ′

b, s[c]:S ′
c � ∅ [T-|]

∅ � (
νs:�′) (Pa | Pb | Pc) � ∅ � ∅ [T-ν]

The reason is that, when typing Pb and Pc , the rely context does not trigger the altered branches of S ′
b and S ′

c , and corre-
spondingly, the typing rule [T-&] in Fig. 3 does not check its inductive clauses for the corresponding process continuations. 
As a consequence, the typing system (safely) accepts this process/type discrepancy.

5.3. From “new” to simpler “old” rules

The typing rules [T-&]/[T-⊕] (Fig. 3) can be demanding: the quantification “∀�′ : � →∗ �′ . . .” can yield many premises (but 
their number is always finite, cf. Remark 4.6). Fortunately, Lemma 5.6 below allows to reduce the number of premises that 
must be checked explicitly.

Lemma 5.6 (Rely context strengthening). If � � P � � � � and � →∗ �′ , then � � P � � � �′ .

Intuitively, Lemma 5.6 holds because if a typing context reduces, it becomes “more deterministic”; hence, if P is typed 
relying on �, it can also rely on its reductions.

Additionally, type checks can be simplified using Proposition 5.7 below (where x is a variable, and not a channel with 
role, by Definition 2.1).

Proposition 5.7. Assume x �∈ dom(�) ∪ dom(�). Then, � � P � � � �, x:S iff � � P � � � �.

By Proposition 5.7, variables in the rely context � are immaterial — intuitively, because they do not influence liveness, 
nor the possible reductions of � and � in the statement.

Lemma 5.6 and Proposition 5.7 become particularly useful when typing a process that branches/selects from/to a variable 
— and (in the latter case) sends a variable. In this case, rules [T-&] and [T-⊕] become the standard MPST typing rules for 
branch/input and select/output (see [11]), plus an unused rely context:
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S ≡ q&i∈Imi(Si).S ′
i ∀i∈ I � � Pi � �, yi :Si, x:S ′

i � �

� � x[q]∑i∈I∪ J {mi (yi).Pi} � �, x:S � �
[T&x]

S ≡ q⊕i∈Imi(Si).S ′
i k∈ I �y � y :Sk � � P � �, x:S ′

k � �

� � x[q]⊕mk〈y〉.P � �y,�, x:S � �
[T⊕x]

This is because in [T-⊕], by Proposition 5.7 we can omit �y from the rely context of the rightmost premise. Further, since 
x:S reduces autonomously (cf. Definition 2.10), in both [T-&] and [T-⊕] the quantification “∀�′, �′′ : � →∗ �′ and �′, x:S →
�′′, x:S ′

i ” amounts to “∀�′ : � →∗ �′ and �′, x:S → �′, x:S ′
i ”; hence, by Lemma 5.6, checking the rightmost premise once

with � is sufficient to know that it holds ∀�′ such that � →∗ �′ .
This shows that in most cases, our rely/guarantee type checking can be simplified, becoming similar to the “classic” 

MPST rules.

6. Conclusions and related work

We presented a new multiparty session typing system (Definition 4.5), based on a rely/guarantee typing strategy, and a 
liveness invariant on typing contexts (Definition 4.1). Our typing system provides a subject reduction result (Theorem 4.9) 
that overcomes the consistency restrictions of “classic” MPST works. By directly exploiting the typing context semantics, our 
typing rules provide flexible type checks supporting all protocols projectable from global types, plus various kinds of live 
protocols that cannot be projected from any global type (Section 5). As a bonus, the independence from global types means 
that our theory is simpler than the “classic” one, in the sense that it does not depend on its syntactic type manipulations 
(i.e., the type projection/merging/duality machinery of “classic” MPST, summarised in Appendix A).

Inter-role dependencies Our rely/guarantee typing system allows to prove type safety of processes implementing protocols 
with complex inter-role dependencies: this is generally not supported by “classic” MPST, as discussed in Sections 1, 3.4
and 5, and Examples 3.4 and 4.7. In this respect, to the best of our knowledge, the only work with comparable features 
is the one by Dezani-Ciancaglini et al. [15]: it provides a “non-classic” MPST theory where processes can only interact 
on one session — and this limitation is crucially exploited to type parallel compositions without splitting their typing 
context (cf. Table 8, rule [T-SESS]). Their approach directly tracks a global type along process reductions, without introducing 
consistency restrictions. However, unlike the present work, Dezani-Ciancaglini et al. [15] do not support multiple sessions 
and delegation — and extending their work in that direction appears challenging. Moreover, our approach does not depend 
on the existence of global types: therefore, it is arguably simpler (since it only uses local types), and supports protocols for 
which no corresponding global type exists, as shown in Section 5.1.

Global types and liveness Our type system does not assume that a session is typed by projecting some global type: it only 
(implicitly) requires that a session is typed by a live composition of local session types, by rule [T-ν] (Fig. 3). If needed, 
a set of local types can be related to a choreography either via “top-down” projection (Section 3.1), or via “bottom-up” 
synthesis (studied, e.g., by Lange and Tuosto [26] and Lange et al. [27]): these concerns are orthogonal to our typing system. 
Our Definition 4.1 (liveness) is inspired by (1) the notion of safety for Communicating Finite-State Machines (CFSMs) Brand 
and Zafiropulo [8] (no deadlocks, orphan messages, unspecified receptions) and (2) the idea of “multiparty session types 
as CFSMs” outlined by Deniélou and Yoshida [14]. In particular, liveness (Definition 4.1) is closely related to the notion of 
Multiparty Compatibility for CFSMs, as illustrated in Section 5.1 (proof of Lemma 5.1). Notably, Deniélou and Yoshida [14]
focus on projecting CFSMs and studying their interactions, and do not technically develop the intuition of “CFSMs as types” 
into an actual typing system. For this reason, they do not realise that the “classic” MPST theory cannot fully support their 
intuition, due to the consistency requirement and the resulting restrictions. Our work provides an actual multiparty session 
typing system that sidesteps these limitations, and comes closer to using “CFSMs as types.”

Deadlock freedom Similarly to most previous MPST works, our approach ensures that a typed ensemble of processes inter-
acting on a single session (i.e., a typed (νs) (

∣∣
p∈I Pp), with each Pp only interacting on s[p]) is deadlock-free; however, it 

does not guarantee deadlock freedom in presence multiple interleaved sessions. This topic is studied by Bettini et al. [5] and 
Coppo et al. [12]: as future work, we plan to investigate how to reuse their results in our theory.

Recursion and duality Various works on binary session types have investigated the subtle interplay between recursion and 
duality. Bono and Padovani [7] and Bernardi and Hennessy [3] independently noticed that the “standard” duality proposed by 
Honda et al. [20] (corresponding to Definition A.3) does not commute with the unfolding of recursion for non-tail-recursive 
types (i.e., with type variables as payloads). An example of such types is μt.⊕m(t).t, similar to our Example 5.3. This implies 
that some “safe” process compositions cannot be typed in binary session theories — and this limitation can also be found 
in “classic” MPST works, due to their consistency requirement (that is rooted in binary duality, cf. Definition 3.3). To solve 
this issue, Bono and Padovani [7] and Bernardi and Hennessy [3] defined a new notion of duality, called complement by 
the latter, and further studied by Bernardi et al. [2]. However, [4, Example 5.21] later noticed that even complement does 
not commute, e.g., when unfolding μt.μt′.&m(t′).t. This issue was later solved by Lindley and Morris [28, Section 5.2]: 
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they add dualised type variables to session types, with specialised duality and unfolding definitions that commute as desired. 
Our approach sidesteps these issues by not requiring syntactic duality, but using a liveness property that unfolds types as 
necessary, and (coinductively) compares the trees of payload types (see Example 5.3 and its discussion).

Encodability and implementations Scalas et al. [33] have proven that the consistency requirement of “classic” MPST creates 
a strong link between MPST and linear π -calculus with binary channels, allowing to encode the former into the latter. They 
also exploit this result to provide an implementation of “classic” MPST in Scala [34]. Our new rely/guarantee typing system 
does not depend on consistency: therefore, the encoding strategy of Scalas et al. [33] can only be applied to the consistent 
fragment of our theory, and implementing the rest is now an open problem.

Future work We plan to investigate typed behavioural congruences and bisimulations for our new theory, as done by 
Kouzapas and Yoshida [24,25] for “classic” MPST.

We also plan to extend our approach to asynchronous multiparty session types [21,22] where process interaction is me-
diated by message queues (similarly to the TCP/IP protocol). The main differences and challenges we foresee stem from the 
fact that, in the present work, the synchronous typing context reduction semantics (Definition 2.10) induce finite state tran-
sition systems — whereas the addition of types for message queues can yield infinite-state systems, impacting decidability 
of liveness and type checking.
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Appendix A. “Classic” multiparty session types: definitions

This appendix contains standard definitions from MPST literature. They are mainly referenced from Section 3, but are not
necessary for our rely/guarantee typing system (Section 4): it uses a behavioural liveness property (Definition 4.1), and does 
not depend on the existence of global types and their projections.

A.1. Partial session types and projections

The global and local type projections in Definition A.1 and Definition A.4 below, with their respective merging operators, are 
based on [38] and [13]. They are more flexible than the simpler projection/merging used, e.g., by Coppo et al. [11]: hence, 
they allow for more global types to be projectable.

Intuitively, the projection and merging in Definition A.1 below allow to reconstruct the expected behaviour of a role in a 
global type, by collecting and combining its internal/external choices along different execution paths.

Definition A.1 (Projection of a global type). The projection of G onto role p, written G�p, is:

(q→r: {mi (Ti) . Gi}i∈I )�p=

⎧⎪⎨⎪⎩
r⊕i∈Imi(Ti).(Gi�p) if p= q

q&i∈Imi(Ti).(Gi�p) if p= r

�i∈I Gi�p if q �= p �= r

(μt.G)�p=
{
μt.(G�p) if G�p �= t′ (∀t′)
end otherwise

t�p= t
end�p= end

where � is the merge operator for (local) session types, defined as:

p&i∈Imi(Si).S ′
i � p& j∈ Jm j(S j).T ′

j = p&k∈I∩ Jmk(Sk).(S ′
k � T ′

k) & p&i∈I\ Jmi(Si).S ′
i & p& j∈ J\Im j(S j).T ′

j

p⊕i∈Imi(Si).S ′
i � p⊕i∈Imi(Si).S ′

i = p⊕i∈Imi(Si).S ′
i

μt.S � μt.T = μt.(S � T ) t � t = t end � end = end

For example, if we have a global type G = p→q: {mi (Ti) . end}i∈I , then the projection G�p describes p’s behaviour as an 
internal choice towards q, with labels mi and payload Ti (i ∈ I); dually, the projection G�q is an external choice from p, 
with labels mi and payloads Ti . Instead, the projection of G onto a role r that is neither p nor q requires to skip the first 
interaction (since it does not involve r), compute the projections onto r along each branch mi (for each i ∈ I), and then 
combine the resulting projections using the merge operator �: in this case, G�r = �i∈I (end�r) = �i∈I end = end, i.e., r
does not perform any input/output in G .

Note that projection and marging are sometimes undefined: for example, it is possible to merge different external choices 
(by merging the continuation types that follow common message label), but not different internal choices. This rules out 
meaningless global types like G ′ = p→q: {m1 .r→p:m1 , m2 .r→p:m2}: here, r is supposed to send either m1 or m2 to 
p, depending on what message p sent to q earlier — but r is not privy to the interactions between other roles, and 
correspondingly, the projection G ′�r= p⊕m1 � p⊕m2 is undefined.



A. Scalas, N. Yoshida / Journal of Logical and Algebraic Methods in Programming 97 (2018) 55–84 73
A.2. Partial session types and duality

A session type S can be further projected onto a role p, to “isolate” the interactions of S involving p from those involving 
other roles (Definition A.4 below). The projection mechanics remind of those in Definition A.1 — but in this case, the result 
is a partial session type (Definition A.2 below); moreover, the merging operator is different (details below). Partial session 
types feature branches, selections and recursion — but no role annotations: therefore, they are similar to binary session 
types (except that their payload types are multiparty), and endowed with a notion of duality (Definition A.3 below). As 
shown in Section 3.2, these technicalities are necessary to define consistency (Definition 3.3).

Definition A.2 (Partial session types). Partial session types, ranged over by H , have the syntax:

H ::= &i∈Imi(Si).Hi
∣∣ ⊕i∈Imi(Si).Hi

∣∣ end
∣∣ μt.H

∣∣ t with I �= ∅ and ∀i ∈ I : fv(Si) = ∅
where mi range over pairwise distinct message labels.

Definition A.3 (Duality of partial session types). The dual of a partial type H , written H , is:

&i∈Imi(Si).Hi = ⊕i∈Imi(Si).Hi ⊕i∈Imi(Si).Hi = &i∈Imi(Si).Hi μt.H = μt.H t = t end = end

We say that H and H ′ are dual iff H = H ′ .

Definition A.4 (Partial projection). The projection of S onto p, written S�p, is a partial type defined as:

(q&i∈Imi(Si).S ′
i)�p=

{
&i∈Imi(Si).(S ′

i�p) if p= q

�i∈I S ′
i�p if p �= q

(q⊕i∈Imi(Si).S ′
i)�p=

{
⊕i∈Imi(Si).(S ′

i�p) if p= q

�i∈I S ′
i�p if p �= q

(μt.S)�p=
{
μt.(S�p) if S�p �= t′ (∀t′)
end otherwise

t�p= t end�p= end

where � is the merge operator for partial session types, defined as:

&i∈Imi(Si).Hi � &i∈Imi(Si).H ′
i = &i∈Imi(Si).(Hi � H ′

i)

⊕i∈Imi(Si).Hi � ⊕ j∈ Jm j(S j).H ′
j = ⊕k∈I∩ Jmk(Sk).(Hk � H ′

k) ⊕ ⊕i∈I\ Jmi(Si).Hi ⊕ ⊕ j∈ J\Im j(S j).H ′
j

μt.H � μt.H ′ = μt.(H � H ′) t � t = t end � end = end

For example, if we have a session type S = p⊕i∈Imi(Si).end, its projection S�p is the partial session type ⊕i∈Imi(Si).end, 
reflecting the fact that S requires to perform an internal choice towards p. Instead, if S is projected onto a role q �= p, we 
need to skip the first output towards p, compute the projections onto q along each branch mi (i ∈ I), and merge them, 
using the partial session type merging operator � . Therefore, we have S�p= �i∈I (end�q) = �i∈I end = end — i.e., q is 
not involved in any interaction in S .

Note that, unlike the session type merging operator in Definition A.1, the partial type merging in Definition A.4 allows 
to combine different internal choices, but not different external choices. Therefore, we have the following examples:

S ′ = p&

{
m1(S1).q⊕m1(S1) ,

m2(S2).q⊕m2(S2)

}
S ′�q= (q⊕m1(S1))�q � (q⊕m2(S2))�q= ⊕m1(S1) � ⊕m2(S2) = ⊕

{
m1(S1) ,

m2(S2)

}

S ′′ = p&

{
m1(S1).q&m1(S1) ,

m2(S2).q&m2(S2)

}
S ′′�q= (q&m1(S1))�q � (q&m2(S2))�q = &m1(S1) � &m2(S2) (undefined)

The partial projection S ′�q is defined, and says that S ′ might send either m1 or m2 to q; by inspecting S ′ , we can further 
notice that m1 (resp. m2) should be sent to q only if m1 (resp. m2) is first received from p — but this dependency from p’s 
messages is safely approximated as an internal choice.

Instead, the partial projection S ′′�q is undefined: this is because S ′′ might be willing to receive either m1 or m2 from q, 
depending on which message is first received from p — but this might lead to incorrect interactions, as shown below:

s[r]:S ′′, s[p]:r⊕m1(S1), s[q]:r⊕m2(S2) → s[r]:q&m1(S1), s[p]:end, s[q]:r⊕m2(S2) � → (A.1)

Since the projection S ′′�q is undefined, the typing context in (A.1) is not consistent (Definition 3.3). By imposing such 
restrictions, the “classic” MPST theory excludes typing contexts where, e.g., an output from q to r might not be matched 
by a corresponding input. 4 For more examples and discussion, see Sections 3.3 and 3.4.

4 Notably, the typing context in (A.1) is also not live: we can easily verify that it does not satisfy Definition 4.1.
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The final ingredient for Definition 3.3 is partial session subtyping, formalised in Definition A.5 below.

Definition A.5 (Partial session subtyping). The subtyping relation � for partial types is coinductively defined by the rules:

∀i ∈ I Si � Ti H ′
i � H ′′

i

&i∈Imi(Si).H ′
i � &i∈I∪ Jmi(Ti).H ′′

i

∀i ∈ I T i � Si H ′
i � H ′′

i

⊕i∈I∪ Jmi(Si).H ′
i � ⊕i∈Imi(Ti).H ′′

i

end � end

H{μt.H/t} � H ′

μt.H � H ′
H � H ′{μt.H ′/t

}
H �μt.H ′

Definition A.5 is similar to binary session subtyping, studied by Gay and Hole [17]: it says that a smaller type is “less 
demanding”, as it allows to choose between more internal choices, and requires to support less external choices.

Appendix B. Typing context reductions

Proposition B.1. For all �, �′, �0 such that dom(�) ∩ dom(�0) = ∅: � → �′ if and only if �,�0 → �′,�0 , with �0 not 
reducing.

Proof. ( =⇒ ) By induction on the size of �0, and by rule [T-Comp] of Definition 2.10.
( ⇐= ) By induction on the size of �0, and by inversion of rule [T-Comp] of Definition 2.10. �

Proposition B.2. For all �, �′, �0 such that dom(�) ∩ dom(�0) = ∅: �

n steps︷ ︸︸ ︷→ ·· · → �′ if and only if �,�0

n steps︷ ︸︸ ︷→ ·· · → �′,�0 , with 
�0 not reducing.

Proof. By induction on n, using (B.1) in the inductive case. �
Appendix C. Liveness

Proposition C.1. If live(�) and � →∗ �′ , then live(�′).

Proof. By induction on the number of reductions in � →∗ �′ . The base case (0 reductions) is trivial, as it implies �′ = �. 
The inductive case (n + 1 reductions) is proved by the induction hypothesis, and clause [L-→] of Definition 4.1 (liveness). �
Proposition C.2. Assume live(�0). Then, �,�0 → �′ implies �′ = �′′, �′′

0 such that either:

(a) �′′ = � and �0 → �′′
0 , or

(b) � → �′′ and �′′
0 = �0 .

Proof. Notice that we must have dom(�) ∩ dom(�0) = ∅ (otherwise, �,�0 would be undefined, by Definition 2.9). By 
contradiction, assume that neither (a) nor (b) holds. Then, one entry of � and one of �0 interact, via rule [T-Comm] of 
Definition 2.10. Hence, �0 contains some (possibly recursive) internal/external choice that cannot be triggered by the other 
elements of �0: this violates clause [L-⊕]/[L-&] of Definition 4.1, and therefore, �0 is not live — contradiction. We conclude 
that either (a) or (b) holds. �

Proposition C.3. Assume live(�0). Then, �,�0

n steps︷ ︸︸ ︷→ ·· · → �′ implies �′ = �′′, �′′
0 such that, for some m ≤ n, �

m steps︷ ︸︸ ︷→ ·· · → �′′

and �0

n − m steps︷ ︸︸ ︷→ ·· · → �′′
0; moreover, �,�0

m steps︷ ︸︸ ︷→ ·· · → �′′,�0 .

Proof. By induction on n using Proposition C.2. The “moreover. . . ” part of the statement is an immediate consequence of the 
first part, and Proposition B.2. �
Lemma C.4. Assume live(�0) and dom(�) ∩ dom(�0) = ∅. Then, live(�,�0) if and only if live(�).

Proof. Assuming the hypotheses, we have:

live(�0) (by hypothesis) (C.1)

dom(�) ∩ dom(�0) = ∅ (by hypothesis) (C.2)
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( =⇒ ) We show that the following predicate:

P = {� | live(�,�0)} (C.3)

satisfies the clauses of Definition 4.1 (liveness). We proceed by examining each � ∈ P, and we have the following (non-
mutually exclusive) cases:

• � = �′, s[p]:S with S = q⊕i∈Imi(Si).S ′
i . We need to show that � satisfies clause [L-⊕]. We have:

live(�,�0) and thus live(�′, s[p]:S,�0) (by (C.3)) (C.4)

∀i ∈ I : ∃�′′ : �′, s[p]:S,�0 →∗ �′′, s[p]:S ′
i,�0 (by (C.4), [L-⊕], (C.1) and Proposition C.3) (C.5)

∀i ∈ I : ∃�′′ : �′, s[p]:S →∗ �′′, s[p]:S ′
i (by (C.5) and Proposition B.2) (C.6)

and by the shape of � and (C.6), we conclude that � satisfies clause [L-⊕];
• � = �′, s[p]:S with S = q&i∈Imi(Si).S ′

i . We need to show that � satisfies clause [L-&]. We have:

live(�,�0) and thus live(�′, s[p]:S,�0) (by (C.3)) (C.7)

∃i ∈ I : ∃�′′ : �′, s[p]:S,�0 →∗ �′′, s[p]:S ′
i,�0 (by (C.7), [L-&], (C.1) and Proposition C.3) (C.8)

∃i ∈ I : ∃�′′ : �′, s[p]:S →∗ �′′, s[p]:S ′
i (by (C.8) and Proposition B.2) (C.9)

and by the shape of � and (C.9), we conclude that � satisfies clause [L-&];
• � = �′, s[p]:μt.S . We need to show that � satisfies clause [L-μ]. We have:

live(�,�0) and thus live(�′, s[p]:μt.S,�0) (by (C.3)) (C.10)

live(�′, s[p]:S{μt.S/t},�0) (by (C.10) and [L-μ]) (C.11)

�′, s[p]:S{μt.S/t} ∈ P (by (C.11) and (C.3)) (C.12)

and by the shape of � and (C.12), we conclude that � satisfies clause [L-μ];
• � → �′ . We need to show that � satisfies clause [L-→]. We have:

�,�0 → �′,�0 (by (C.2) and Proposition B.1) (C.13)

live(�,�0) (by (C.3)) (C.14)

live(�′,�0) (by (C.14), (C.13) and [L-→]) (C.15)

�′ ∈ P (by (C.15) and (C.3)) (C.16)

and by the hypothesis � → �′ and (C.16), we conclude that � satisfies clause [L-→].

We have proved that P satisfies all clauses of Definition 4.1 (liveness). Since live is the largest predicate satisfying 
such clauses, we have that ∀� : � ∈ P implies live(�); and since ∀� : live(�,�0) implies � ∈ P, we conclude that ∀� :
live(�,�0) implies live(�).

( ⇐= ) We show that the following predicate:

P = {�,�0 | live(�)} (C.17)

satisfies the clauses of Definition 4.1 (liveness). We proceed similarly to the case above ( =⇒ ): by examining each �,�0 ∈ P. 
The difference is that we now use Proposition B.2 to add (rather than remove) �0 when examining the corresponding 
element of P yielded by the set comprehension (C.17). Then, we know that live is the largest predicate satisfying all clauses 
of Definition 4.1 (liveness); therefore, we have that ∀� : � ∈ P implies live(�); and since ∀� : live(�) implies (�,�0) ∈ P, 
we conclude that ∀� : live(�) implies live(�,�0). �
Proposition C.5. live(�, x:S) if and only if live(�).

Proof. Straightforward by Definition 4.1 (liveness), noticing that x:S is not relevant for the definition (which only considers 
channels with roles). �
Proposition C.6. If live(�, c :S) and S ≡ S ′ , then live(�, c :S ′).
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Proof. By showing that the following predicate:

P = {
�, c :S ′ ∣∣ live(�, c :S) and S ≡ S ′}

satisfies the clauses of Definition 4.1 (liveness). Then, since live is the largest predicate satisfying such clauses, we have 
that ∀� : � ∈ P implies live(�); and since ∀�, S ′ : live(�, c :S) and S ≡ S ′ implies (�, c :S ′) ∈ P, we conclude that ∀�, S ′ :
live(�, c :S) and S ≡ S ′ implies live(�, c :S ′). �
Proposition C.7. If live(�,�′) and �′ ≡ �′′ , then live(�,�′′).

Proof. By induction on the size of �′: the base case �′ = ∅ is trivial, and the inductive case is proved using Proposi-
tion C.6. �
Proposition C.8. If end(�), then live(�).

Proof. Take �, �′ such that dom(�) = dom
(
�′) and ∀c ∈ dom(�) : �′(c) = end. By Definition 4.5, the singleton predicate {

�′} (vacuously) satisfies clauses [L-&], [L-⊕] [L-μ], and [L-→] of Definition 4.1 (liveness): hence, live(�′). Now, assume end(�): 
by [T-End] in Fig. 3, we have � ≡ �′; therefore, by Proposition C.7, we conclude live(�). �
Appendix D. Basic properties of typing rules

Lemma D.1 (Typing inversion). Assume � � P � � � �. Then, exactly one of the following holds:

[T-0] P = 0 and end(�)

[T-def] P = def X(x1, . . . , xn) = P ′ in Q and ∃S1, . . . , Sn such that:
– �, X :S1, . . . , Sn � P ′ � x1 :S1, . . . , xn :Sn � ∅
– �, X :S1, . . . , Sn � Q � � � �

[T-X ] P = X〈c1, . . . , cn〉 and ∃S1, . . . , Sn such that:
– � = �0,�1, . . . ,�n
– � � X : S1, . . . , Sn
– end(�0)

– ∀i ∈ 1..n : �i � ci :Si
[T-ν] P = (νs:�s) Q and:

– �s = {
s[p]:Sp

}
p∈I

– � � Q � �,�s � �

[T-|] P = P1 | P2 and ∃�1, �2 such that:
– � = �1,�2
– � � P1 � �1 � �,�2
– � � P2 � �2 � �,�1

[T-&] P = c[q]∑i∈I∪ J {mi (yi).Pi} and ∃�0, S such that:
– � = �0, c :S
– S ≡ q&i∈Imi(Si).S ′

i
– ∀i ∈ I and ∀�′, �′′ such that � →∗ �′ and �′, c :S → �′′, c :S ′

i :
∗ � � Pi � �, yi :Si, c :S ′

i � �′′
[T-⊕] P = c[q]⊕mk〈d〉.P ′ and ∃�d, �0, S such that:

– � = �d,�0, c :S
– S ≡ q⊕i∈Imi(Si).S ′

i
– ∃k ∈ I such that:

∗ �d � d:Sk
∗ ∀�′, �′′ such that � →∗ �′ and �′, c :S → �′′, c :S ′

k :
· � � P ′ � �, c :S ′

k � �′′,�d

Proof. Straightforward by observing that the typing rules in Fig. 3 can be deterministically inverted: i.e., each process 
production in Fig. 1 can be typed by at most one rule. �
Lemma 5.6 (Rely context strengthening). If � � P � � � � and � →∗ �′ , then � � P � � � �′ .

Proof. By induction on the derivation of � � P � � � �. The crucial cases are [T-&] and [T-⊕]: they are both proved by 
inverting the typing rule (using Lemma D.1) and observing that its premises require the continuations of P to be typed 
using all reducts of � — which include all reducts of �′ . This allows to apply the induction hypothesis, and conclude by the 
same rule. �
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Proposition D.2. Assume � � P � � � �. Take some �′ such that live(�′) and (dom(�) ∪ dom(�)) ∩ dom
(
�′) = ∅. Then,

� � P � � � �,�′ .

Proof. By induction on the derivation of � � P � � � �. �
Proposition D.3. Assume � � P � � � �. Take some �′ such that end(�′) and (dom(�) ∪ dom(�)) ∩ dom

(
�′) = ∅. Then, 

� � P � �,�′ � �.

Proof. By induction on the derivation of � � P � � � �. �
Proposition D.4. Assume � � P � � � �. If X �∈ dom(�), then �, X :̃S � P � � � �.

Proof. By induction on the derivation of � � P � � � �. �
Lemma D.5 (Subject congruence). If � � P � � � � and P ≡ P ′ , then � � P ′ � � � �.

Proof. Assuming, � � P � � � �, the proof proceeds by cases on P , examining the possible shapes of P ′ allowed by ≡ in 
Definition 2.4, and using Lemma D.1 to reconstruct their typing. �
Appendix E. Substitution lemma

Proposition 5.7. Assume x �∈ dom(�) ∪ dom(�). Then, � � P � � � �, x:S iff � � P � � � �.

Proof. ( =⇒ ) By induction on the derivation of � � P � � � �, x:S .
( ⇐= ) By induction on the derivation of � � P � � � �. �

Corollary E.1. � � P � � � � iff � � P � � � �\x.

Proof. If x �∈ dom(�), then the statement holds vacuously. Otherwise, if x ∈ dom(�), it is a direct consequence of Proposi-
tion 5.7. �
Proposition E.2. Assume � � P � � � � and x ∈ fv(P ). Then, x ∈ dom(�).

Proof. By induction on the derivation of � � P � � � �. �
Lemma 4.8 (Substitution). If �� P ��, x:S��,�′ and ��s[p]:S, then � � P {s[p]/x} � �, s[p]:S � �′ .

Proof. Assume the hypotheses. We have:

� � P � �, x:S � � (by hypothesis) (E.1)

� = s[p]:S ′ with S ≡ S ′ (by hypothesis and [T-Chan] in Fig. 3) (E.2)

live(�, x:S,�,�′) (by Definition 4.5) (E.3)

live(�,�,�′) (by (E.3) and Proposition 5.7) (E.4)

Note that, in the judgement in the conclusion, the liveness requirement on the guarantee/rely contexts (Definition 4.5) 
is trivially satisfied:

live(�, s[p]:S,�′) (by (E.4), (E.2) and Proposition C.7) (E.5)

We proceed by induction on the derivation of � � P � �, x:S � �,�′:

• Base case [T-0]. We have:

P = 0 and end(�, x:S) (by conclusion of [T-0] and Lemma D.1, case [T-0]) (E.6)

S ≡ end (by (E.6) and [T-End] in Fig. 3) (E.7)
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end(�) (by (E.6) and [T-End] in Fig. 3) (E.8)

end(�, s[p]:S) (by (E.8), (E.7) and [T-End] in Fig. 3) (E.9)

P {s[p]/x} = 0{s[p]/x} = 0 (from (E.6)) (E.10)

end(�, s[p]:S)

� � P {s[p]/x} � �, s[p]:S � �′ [T-0]

(by (E.9), (E.10) and (E.5))

• Base case [T-X ]. We have:

� � X : S1, . . . , Sn end(�0) ∀i ∈ 1..n �i � ci :Si

� � P � �, x:S � �
[T-X]

(by Lemma D.1, case [T-X]) (E.11)

P = X〈c1, . . . , cn〉 (from the conclusion of (E.11)) (E.12)

�, x:S = �0,�1, . . . ,�n (by (E.11)) (E.13)

Now, from (E.13), we have two sub-cases, depending on whether x is used as parameter for X (i.e., whether ci = x, for 
some i ∈ 1..n):
– x is not used as parameter for calling X , i.e., ∀i ∈ 1..n : ci �= x. Then:

P {s[p]/x} = P (from the hypothesis and (E.12)) (E.14)

�0 � x:S (from the hypothesis, (E.11) and (E.13)) (E.15)

�0 = x:S and S ≡ end (by (E.15), (E.11) and [T-End] in Fig. 3) (E.16)

end(s[p]:S) (by (E.16) and [T-End] in Fig. 3) (E.17)

� � X : S1, . . . , Sn end(s[p]:S) ∀i ∈ 1..n �i � ci :Si

� � P {s[p]/x} � �, s[p]:S � �′ [T-X]

(by (E.16), (E.17), (E.14))

– x is used as parameter for calling X , i.e., ck = x for some k ∈ 1..n. Then:

P {s[p]/x} = X
〈
c1, . . . , ck−1, s[p], ck+1, . . . , cn

〉
(from the hypothesis and (E.12)) (E.18)

�k ≡ x:S (by (E.11) and [T-Chan] in Fig. 3) (E.19)

� � X : S1, . . . , Sn end(�0) s[p]:S � s[p]:S
∀i ∈ {1..n} \ {k} �i � ci :Si

� � P {s[p]/x} � �, s[p]:S � �′ [T-X]

(by (E.11), (E.19) and (E.18))

• Inductive case [T-&]. In this case, P is a branching on some channel. We have two sub-cases:
(a) P is a branching on some c �= x. Then, the substitution in the statement does not involve c, and the statement holds 

by the induction hypothesis and rule [T-&]; or
(b) P is a branching on x, which in turn is substituted by a channel with role s[p].
We detail the proof for the latter (and most interesting) case. We have:

P = x[q]∑i∈I∪ J {mi (yi).Pi} (conclusion of rule [T-&]) (E.20)

S ≡ q&i∈Imi(Si).S ′
i ∀i ∈ I

∀�′′, �′′′ : �,�′ →∗ �′′ and �′′, x:S → �′′′, x:S ′
i

� � Pi � �, yi :Si, x:S ′
i � �′′′

� � x[q]∑i∈I∪ J {mi (yi).Pi} � �, x:S � �,�′ [T-&]

(by Lemma D.1, case [T-&]) (E.21)

� = s[p]:S ′ with S ′ ≡ S ≡ q&i∈Imi(Si).S ′
i (by (E.2), and (E.21)) (E.22)

We can now observe that in (E.21), by Definition 2.10, we have ∀i ∈ I : �′′, x:S → �′′, x:S ′
i — i.e., the typing context 

entry for x reduces “in isolation”, and does not involve the rest of the typing context �′′ . Therefore, from the reductions 
in (E.21) we have:



A. Scalas, N. Yoshida / Journal of Logical and Algebraic Methods in Programming 97 (2018) 55–84 79
∀i ∈ I : ∀�′′, �′′′ : �,�′ →∗ �′′ and �′′, x:S → �′′′, x:S ′
i (E.23)

implies �′′′ = �′′ and � � Pi � �, yi :Si, x:S ′
i � �′′ (from (E.21), premises of [T-&]) (E.24)

In order to apply the induction hypothesis, we focus on a subset of the reductions in (E.23) that involves the entries for 
x and s[p] as specified in (E.25) below (recall that � = s[p]:S ′ ≡ s[p]:S , by (E.22)):

∀i ∈ I : ∀�′′,�′′′ such that

⎧⎨⎩ �′ →∗ �′′ and
�′′, s[p]:S → �′′′, s[p]:S ′

i and
�′′′, s[p]:S ′

i, x:S → �′′′, s[p]:S ′
i, x:S ′

i :
(E.25)

� � Pi � �, yi :Si, x:S ′
i � �′′′, s[p]:S ′

i (by (E.25) and (E.24)) (E.26)

s[p]:S ′
i � s[p]:S ′

i (by Definition 4.5) (E.27)

� � Pi{s[p]/x} � �, yi :Si, s[p]:S ′
i � �′′′ (by (E.26), (E.27) and induction hyp.) (E.28)

By exploiting (E.28), we can now conclude:

P {s[p]/x} = s[p][q]∑i∈I∪ J {mi (yi).Pi{s[p]/x}} (by (E.20)) (E.29)

S ≡ q&i∈Imi(Si).S ′
i ∀i ∈ I

∀�′′, �′′′ : �′ →∗ �′′ and �′′, s[p]:S → �′′′, s[p]:S ′
i

� � Pi{s[p]/x} � �, yi :Si, s[p]:S ′
i � �′′′

� � P {s[p]/x} � �, s[p]:S � �′ [T-&]

(by (E.29), (E.28))

• Inductive case [T-⊕]. In this case, P is a selection on some variable. We have two sub-cases:
(a) P is a selection on some c �= x. Then, the substitution in the statement does not involve c, and the statement holds 

by the induction hypothesis and rule [T-⊕]; or
(b) P is a selection on x, which in turn is substituted by a channel with role s[p].
We detail the proof for the latter (and most interesting) case. The strategy is similar to the one we adopted for proving 
the case [T-&]. We have:

∃k ∈ I : P = x[q]⊕mk〈d〉.P ′ (conclusion of rule [T-⊕]) (E.30)

� = �0,�d and

S ≡ q⊕i∈Imi(Si).S ′
i ∃k ∈ I �d � d:Sk

∀�′′,�′′′ : �,�′ →∗ �′′ and �′′, x:S → �′′′, x:S ′
k

� � P ′ � �0, x:S ′
k � �′′′,�d

� � x[q]⊕mk〈d〉.P ′ � �, x:S � �,�′ [T-⊕]

(by Lemma D.1, case [T-⊕]) (E.31)

� = s[p]:S ′ with S ′ ≡ S ≡ s[p]:q⊕i∈Imi(Si).S ′
i (by (E.2), and (E.31)) (E.32)

∀�′′, �′′′ : � →∗ �′′ and �′′, x:S → �′′′, x:S ′
k

implies �′′′ = �′′ and � � P � �0, x:S ′
k � �′′,�d (from (E.31), premises of [T-⊕]) (E.33)

∀�′′,�′′′ such that

⎧⎨⎩ �′ →∗ �′′ and
�′′, s[p]:S → �′′′, s[p]:S ′

k and
�′′′, s[p]:S ′

k, x:S → �′′′, s[p]:S ′
k, x:S ′

k :
(E.34)

� � P � �0, x:S ′
k � �′′′, s[p]:S ′

k,�d (by (E.34) and (E.33)) (E.35)

s[p]:S ′
k, � s[p]:S ′

k (by Definition 4.5) (E.36)

� � P ′{s[p]/x} � �0, s[p]:S ′
k � �′′′,�d (by (E.35), (E.36) and induction hyp.) (E.37)

P {s[p]/x} = s[p][q]⊕mk〈d〉.P ′{s[p]/x} (by (E.30)) (E.38)

S ≡ q⊕i∈Imi(Si).S ′
i ∃k ∈ I �d � d:Sk

∀�′′, �′′′ : �′ →∗ �′′ and �′′, s[p]:S → �′′′, s[p]:S ′
k

� � P ′{s[p]/x} � �0, s[p]:S ′
k � �′′′,�d

� � P {s[p]/x} � �, s[p]:S � �′ [T-⊕]

(by (E.38), (E.37), (E.31))
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• Inductive case [T-|]. We have:

P = P1 | P2 (conclusion of rule [T-|]) (E.39)

� = �1,�2 and � � P1 | P2 � �1,�2, x:S � �,�′ (by (E.39), Lemma D.1, case [T-|]) (E.40)

Now, the typing judgement in (E.40) implies that, in the corresponding instance of [T-|], x:S could be used to type either 
P1 or P2 in the rule premises — i.e., we can have either:⎧⎨⎩ � � P1 � �1, x:S � �,�′,�2

� � P2 � �2 � �,�′,�1, x:S
x �∈ fv(P2)

(by Proposition E.2) (E.41)

or ⎧⎨⎩ � � P1 � �1 � �,�′,�2, x:S
� � P2 � �2, x:S � �,�′,�1
x �∈ fv(P1)

(by Proposition E.2) (E.42)

We proceed assuming (E.41) (the proof for (E.42) is symmetric). We have:

� � P1{s[p]/x} � �1, s[p]:S � �′,�2 (by (E.41), (E.2) and induction hyp.) (E.43)

� � P2 � �2 � �′,�1, s[p]:S (by (E.41), (E.2) and Proposition 5.7) (E.44)

P {s[p]/x} = (P1 | P2){s[p]/x} = P1{s[p]/x} | P2{s[p]/x} (by (E.39)) (E.45)

P2 = P2{s[p]/x} (by (E.41), since x �∈ fv(P2)) (E.46)

� � P1{s[p]/x} � �1, s[p]:S � �′,�2

� � P2{s[p]/x} � �2 � �′,�1, s[p]:S

� � P {s[p]/x} � �, s[p]:S � �′ [T-|]
(by (E.45), (E.43), (E.44), (E.46), (E.40)) (E.47)

• Inductive case [T-def]. We have:

P = def X(x1, . . . , xn) = Q in R (conclusion of rule [T-def]) (E.48)

�, X :S1, . . . , Sn � Q � x1 :S1, . . . , xn :Sn � ∅
�, X :S1, . . . , Sn � R � �, x:S � �,�′

� � P � �, x:S � �,�′ [T-def]

(by (E.48) and Lemma D.1, case [T-def]) (E.49)

fv(Q ) ⊆ {x1, . . . , xn} (by (E.49) (typing of Q ) and Proposition E.2 × n) (E.50)

fv( X(x1, . . . , xn) = Q ) = ∅ (by (E.50)) (E.51)

P {s[p]/x} = def X(x1, . . . , xn) = Q in (R{s[p]/x}) (by (E.48) and (E.51)) (E.52)

�, X :S1, ..., Sn � R{s[p]/x} � �, s[p]:S � �′ (by (E.49) (typing of R), induction hyp.) (E.53)

�, X :S1, . . . , Sn � Q � x1 :S1, . . . , xn :Sn � ∅
�, X :S1, . . . , Sn � R{s[p]/x} � �, s[p]:S � �′

� � P {s[p]/x} � �, s[p]:S � �′ [T-def]

(by (E.52), (E.49) and (E.53)) �

Appendix F. Subject reduction

Theorem 4.9 (Subject reduction). If � � P � � � � and P →∗ P ′ , then ∃�′ such that � →∗ �′ and � � P ′ � �′ � �.

Proof. Assume:

� � P � � � � (by hypothesis) (F.1)
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Note that by (F.1) and Definition 4.5, we have live(�,�), and to obtain a valid typing judgement for P ′ , we must ensure 
live(�′,�): by Proposition C.1, this is guaranteed once we prove � →∗ �′ , since it implies �,� →∗ �′,�.

First, we prove the following property, for one reduction step of P :

P → P ′ implies ∃�′ such that � →∗ �′ and � � P ′ � �′ � � (F.2)

Assuming the transition P → P ′ , we proceed by induction on its derivation.

• Base case [R-Comm]. We have:

P = s[p][q]∑i∈I {mi (yi).Pi} | s[q][p]⊕mk〈s′[r]〉.Q (k ∈ I) (by inversion of the rule) (F.3)

P ′ = Pk
{

s′[r]/yk

} | Q (by inversion of the rule) (F.4)

∃�1,�2 : � = �1,�2 and

� � s[p][q]∑i∈I {mi (yi).Pi} � �1 � �,�2

� � s[q][p]⊕mk〈s′[r]〉.Q � �2 � �,�1

� � P � � � �
[T-|]

(by (F.3), Lemma D.1, case [T-|]) (F.5)

∃�1 = �,�2 and ∃�2 = �,�1 (by (F.5)) (F.6)

∃ J : ∅ �= J ⊆ I ∃�′
1, S : �1 = �′

1, s[p]:S such that

S ≡ q&i∈ Jmi(Si).S ′
i ∀i ∈ J

∀�′, �′′ : �1 →∗ �′ and �′, s[p]:S → �′′, s[p]:S ′
i

� � Pi � �′
1, yi :Si, s[p]:S ′

i � �′′

� � s[p][q]∑i∈I {mi (yi).Pi} � �1 � �1
[T-&]

(by (F.5), Lemma D.1, case [T-&]) (F.7)

∃I ′ �= ∅ ∃�2s′ ,�′
2, T : �2 = �2s′ ,�′

2, s[q]:T such that

T ≡ p⊕i∈I ′mi(Ti).T ′
i

∃k ∈ I ′ �2s′ � s′[r]:Tk
∀�′,�′′ : �2 →∗ �′ and �′, s[q]:T → �′′, s[q]:T ′

k
� � Q � �′

2, s[q]:T ′
k � �′′, �2s′

� � s[q][p]⊕mk〈s′[r]〉.Q � �2 � �2
[T-⊕]

(by (F.5), Lemma D.1, case [T-⊕]) (F.8)

s[q]:p⊕i∈I ′mi(Ti).T ′
i ≡ s[q]:T ∈ �2 � �1 (by (F.8) and (F.6)) (F.9)

s[p]:q&i∈ Jmi(Si).S ′
i ≡ s[p]:S ∈ �1 � �2 (by (F.7) and (F.6)) (F.10)

I ′ ⊆ J and therefore k ∈ J (by (F.9), (F.6), (F.7), live(�1,�1) and Definition 4.1) (F.11)

∀i ∈ J : Si ≡ Ti (by (F.11), live(�1,�1) and Definition 4.1) (F.12)

�2s′ � s′[r]:Sk (by (F.8) and (F.12)) (F.13)

s′[r]:Sk ≡∈ �1 (by (F.13), (F.8) and (F.6)) (F.14)

∀i ∈ J : s[p]:S, s[q]:T →≡ s[p]:S ′
i, s[q]:Ti ((F.11), (F.9), live(�1,�1), Definition 4.1) (F.15)

∃�′
1 : �1, s[p]:S →≡ �′

1, s[p]:S ′
k, , s[q]:T ′

k (by (F.9) and (F.15)) (F.16)

� � Pk � �′
1, yk :Sk, s[p]:S ′

k � �′
1 (by (F.16) and (F.7)) (F.17)

s′[r]:Sk ≡∈ �′
1 (by (F.14) and (F.16)) (F.18)

� � Pk
{

s′[r]/yk

} � �′
1, s′[r]:Sk, s[p]:S ′

k � �′
1\s′[r] ((F.17), (F.18), Lemma 4.8) (F.19)

�′
1\s′[r] ≡ �,�′

2, s[q]:T ′
k (by (F.6), (F.8), (F.13), and (F.16)) (F.20)

∃�′
2 : �2, s[q]:T →≡ �′

2, s[p]:S ′
k, s[q]:T ′

k (by (F.10) and (F.15)) (F.21)

� � Q � �′
2, s[q]:T ′

k � �′
2, �2s′ (by (F.21) and (F.8)) (F.22)

�′ , �2s′ ≡ �,�′
1,�2s′ , s[p]:S ′ (by (F.6), (F.7), (F.21), (F.13) and Definition 4.5) (F.23)
2 k
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∃�′ = �′′
1,�′′

2 such that:

�′′
1 = �′

1, �2s′ , s[p]:S ′
k (F.24)

�′′
2 = �′

2, s[q]:T ′
k (F.25)

� →∗ �′ (by (F.5), (F.7), (F.8), (F.24), (F.25)) (F.26)

� � Pk
{

s′[r]/yk

} � �′′
1 � �,�′′

2

� � Q � �′′
2 � �,�′′

1

� � Pk
{

s′[r]/yk

} | Q � �′ � �
[T-|] (

by (F.19), (F.24), (F.20), (F.25);
by (F.22), (F.25), (F.23), (F.24)

)
(F.27)

• Base case [R-X ]. We have:

P = def X(x1, . . . , xn) = Q in (X〈s1[p1], . . . , s1[p1]〉 | R) (by inversion of the rule) (F.28)

P ′ = def X(x1, . . . , xn) = Q in (Q {s1[p1]/x1} · · · {sn[pn]/xn} | R) (by inversion of the rule) (F.29)

� = �∗,�R and �∗ = �0,�1, ...,�n and �′ = �, X :S1, ..., Sn such that: (F.30)

�′ � Q � x1 :S1, . . . , xn :Sn � ∅

�′ � X : S1, . . . , Sn

end(�0) ∀i ∈ 1..n �i � si[pi]:Si

�′ � X〈s1[p1], . . . , s1[p1]〉 � �∗ � �,�R
[T-X]

�′ � R � �R � �,�∗
�′ � X〈s1[p1], . . . , s1[p1]〉 | R � � � �

[T-|]

� � P � � � �
[T-def]

(by (F.28), (F.1), Lemma D.1, cases [T-def],[T-|],[T-X]) (F.31)

live(�0) (by (F.31) and Proposition C.8) (F.32)

live(�1, . . . ,�n,�,�R) (by (F.31), Definition 4.5, (F.32), Lemma C.4) (F.33)

live((�1, . . . ,�n,�,�R)\x1, . . . , xn) (by (F.33) and Proposition C.5 × n) (F.34)

live(�1, . . . ,�n, ((�,�R)\x1, . . . , xn)) (by (F.34), (F.31) and Definition 4.5) (F.35)

�′ � Q � x1 :S1, ..., xn :Sn � �1, ...,�n, ((�,�R)\x1, ..., xn) ((F.35), (F.31), Proposition D.2) (F.36)

�′ � Q {s1[p1]/x1} · · · {sn[pn]/xn} � �1, ...,�n � (�,�R)\x1, ..., xn

(
(F.36), (F.31),
Lemma 4.8 × n

)
(F.37)

�′ � Q {s1[p1]/x1} · · · {sn[pn]/xn} � �∗ � �,�R

(
(F.37), (F.30), (F.31),
Proposition D.3, Corollary E.1 × n

)
(F.38)

Let �′ = � = �∗,�R = �0,�1, . . . ,�n,�R (hence, � →∗ �′) (by (F.30)) (F.39)

�′ � Q � x1 :S1, . . . , xn :Sn � ∅

�′ � Q {s1[p1]/x1} · · · {sn[pn]/xn} � �∗ � �,�R

�′ � R � �R � �,�∗
�′ � Q {s1[p1]/x1} · · · {sn[pn]/xn} | R � �′ � �

[T-|]

� � P ′ � �′ � �
[T-def]

(by (F.38), (F.39), (F.29), (F.31))

• Inductive case [R-|]. We have:

P = P1 | P2 (by inversion of the rule) (F.40)

∃�1,�2 : � = �1,�2 (by (F.40), (F.1) and Lemma D.1, case [T-|]) (F.41)

� � P1 � �1 � �,�2 (by (F.40), (F.41) and Lemma D.1, case [T-|]) (F.42)

� � P2 � �2 � �,�1 (by (F.40), (F.41) and Lemma D.1, case [T-|]) (F.43)

P1 → P ′
1 and P ′ = P ′

1 | P2 (by inversion of [R-|]) (F.44)

∃�′
1 : �1 →∗ �′

1 and � � P ′
1 � �′

1 � �,�2 (by (F.42), (F.44) and i.h.) (F.45)
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�,�1 →∗ �,�′
1 (by (F.45) and Definition 2.10) (F.46)

� � P2 � �2 � �,�′
1 (by (F.43), (F.46) and Lemma 5.6) (F.47)

∃�′ = �′
1,�2 such that � →∗ �′ (by (F.41), (F.45) and Definition 2.10) (F.48)

� � P ′
1 � �′

1 � �,�2 � � P2 � �2 � �,�′
1

� � P ′ � �′ � �
[T-|]

(by (F.44), (F.45), (F.47), (F.48))

• Inductive case [R-ν]. We have:

∃Q : P = (νs) Q (by inversion of the rule) (F.49)

P → P ′ implies ∃Q ′ : Q → Q ′ and P ′ = (νs) Q ′ (by (F.49), inv. of [R-ν]) (F.50)

�s = {
c[p]:Sp

}
p∈I � � Q � �,�s � �

� � (νs:�s) Q � � � �
[T-ν]

(by (F.49), Lemma D.1, case [T-ν]) (F.51)

∃�′′ : �,�s →∗ �′′ and � � Q ′ � �′′ � � (by (F.51), (F.50), i.h.) (F.52)

live(�s) (by (F.51) (premise and conclusion of [T-ν]) and Lemma C.4) (F.53)

∃�′,�′
s : �′′ = �′,�′

s and � →∗ �′ and �s →∗ �′
s ((F.51), (F.52), (F.53), Proposition C.3) (F.54)

�,� →∗ �′,� (by (F.54) and Definition 2.10) (F.55)

live(�′,�) (by (F.51), (F.55) and Proposition C.1) (F.56)

�′
s = {

s[p]:S ′
p

}
p∈I

� � Q ′ � �′,�′
s � �

� � P ′ � �′ � �
[T-ν]

(by (F.50), (F.52), (F.54), (F.56))

• Inductive case [R-def]. We have:

P = def X (̃x) = Q in R (by inversion of the rule) (F.57)

P ′ = def X (̃x) = Q in R ′ with R → R ′ (from rule premises) (F.58)

�, X :S1, . . . , Sn � Q � x1 :S1, . . . , xn :Sn � ∅ �, X :S1, . . . , Sn � R � � � �

� � P � � � �
[T-def]

(by (F.57), (F.1), Lemma D.1, case [T-def]) (F.59)

∃�′ : � →∗ �′ and �, X :S1, . . . , Sn � R ′ � �′ � � (by (F.59), (F.58), i.h.) (F.60)

�, X :S1, . . . , Sn � Q � x1 :S1, . . . , xn :Sn � ∅ �, X :S1, . . . , Sn � R ′ � �′ � �

� � P ′ � �′ � �
[T-def]

(by (F.60) and (F.58))

• Inductive case [R-≡]. We have:

P ≡ Q → Q ′ ≡ P ′ (for some Q , Q ′) (by inversion of the rule) (F.61)

� � Q � � � � (by (F.1), (F.61) and Lemma D.5) (F.62)

∃�′ : � →∗ �′ and � � Q ′ � �′ � � (by (F.62), (F.61) and induction hyp.) (F.63)

� � P ′ � �′ � � (by (F.63), (F.61) and Lemma D.5)

We have thus proved (F.2). Then, we prove the main statement by induction on the number of reductions in P →∗ P ′: 
the base case is trivial (0 reductions, and thus P = P ′); in the inductive case (n + 1 reductions), we apply the induction 
hypothesis and (F.2). �
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[15] M. Dezani-Ciancaglini, S. Ghilezan, S. Jakšić, J. Pantović, N. Yoshida, Precise subtyping for synchronous multiparty sessions, in: PLACES 2015, vol. 203, 

2016, pp. 29–43.
[16] S. Gay, A. Ravara (Eds.), Behavioural Types: From Theory to Tools, River Publishers Series in Automation, Control and Robotics, 2017.
[17] S.J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Inform. 42 (2–3) (2005) 191–225.
[18] J.-Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987) 1–102.
[19] K. Honda, Types for dyadic interaction, in: CONCUR, 1993, pp. 509–523.
[20] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: ESOP, 1998, 

pp. 122–138.
[21] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: POPL, 2008, pp. 273–284, full version: [22].
[22] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, J. ACM 63 (1) (2016) 9:1–9:67.
[23] H. Hüttel, I. Lanese, V.T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou, D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H.T. Vieira, G. Zavattaro, 

Foundations of session types and behavioural contracts, ACM Comput. Surv. 49 (1) (2016) 3:1–3:36.
[24] D. Kouzapas, N. Yoshida, Globally governed session semantics, in: CONCUR, 2013, pp. 395–409.
[25] D. Kouzapas, N. Yoshida, Globally governed session semantics, Log. Methods Comput. Sci. 10 (4) (2014).
[26] J. Lange, E. Tuosto, Synthesising choreographies from local session types, in: CONCUR, 2012, pp. 225–239.
[27] J. Lange, E. Tuosto, N. Yoshida, From communicating machines to graphical choreographies, in: POPL, 2015, pp. 221–232.
[28] S. Lindley, J.G. Morris, Talking bananas: structural recursion for session types, in: ICFP, 2016, pp. 434–447.
[29] R. Milner, Communicating and Mobile Systems: The π -Calculus, Cambridge University Press, 1999.
[30] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, parts I and II, Inf. Comput. 100 (1) (1992) 1–77.
[31] B.C. Pierce, Types and Programming Languages, MIT Press, MA, USA, 2002.
[32] D. Sangiorgi, D. Walker, The π -Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[33] A. Scalas, O. Dardha, R. Hu, N. Yoshida, A linear decomposition of multiparty sessions for safe distributed programming, in: ECOOP, 2017, 

pp. 24:1–24:31.
[34] A. Scalas, O. Dardha, R. Hu, N. Yoshida, A linear decomposition of multiparty sessions for safe distributed programming (artifact), Dagstuhl Artifacts 

Ser. 3 (1) (2017) 3:1–3:2.
[35] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its typing system, in: PARLE, 1994, pp. 398–413.
[36] P. Wadler, Propositions as sessions, in: ICFP, 2012, pp. 273–286.
[37] P. Wadler, Propositions as sessions, J. Funct. Program. 24 (2–3) (2014) 384–418.
[38] N. Yoshida, P. Deniélou, A. Bejleri, R. Hu, Parameterised multiparty session types, in: FoSSaCS, 2010, pp. 128–145.

http://refhub.elsevier.com/S2352-2208(17)30148-7/bib414242434344474747484A4D4D4D4E4E50565932303137s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib414242434344474747484A4D4D4D4E4E50565932303137s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib414242434344474747484A4D4D4D4E4E50565932303137s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4265726E6172646944474B3134s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42483133s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42483133s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42483136s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42657474696E6932303038476C6F62616C50726F6772657373s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42657474696E6932303038476C6F62616C50726F6772657373s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib426F6363686932303135446561646C696E6573s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42503132s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4272616E643A313938333A4346534Ds1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib43616972657332303130s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44424C503A6A6F75726E616C732F6D7363732F43616972657350543136s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib436F70706F3230313547656E746C65496E74726F4D41505354s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib436F70706F3230313547656E746C65496E74726F4D41505354s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib434459503136476C6F62616C50726F67726573734D534353s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib434459503136476C6F62616C50726F67726573734D534353s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib506172616D6574657269736564594442483132s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44656E69656C6F75323031334943414C50s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44656E69656C6F75323031334943414C50s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44474A50593135507265636973656E6573s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44474A50593135507265636973656E6573s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib42656854797065735468656F7279546F6F6C7332303137s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib47483035s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4769726172644A593A6C696E6C6F67s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib486F6E646139334479616469635479706573s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib486F6E6461564B3938436F6D6D50726F67s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib486F6E6461564B3938436F6D6D50726F67s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4859433038s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4859433038s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib486F6E64613A323031363A4D41533A323839333435302E32383237363935s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib48757474656C3A323031363A4653543A323931313939322E32383733303532s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib48757474656C3A323031363A4653543A323931313939322E32383733303532s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4B6F757A61706173593133s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4B6F757A61706173593134s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4C616E67653230313253796E746865736973s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4C616E676532303135477261706843686F72s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4C696E646C65794D6F727269734943465032303136s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4D696C6E65723939s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib4D696C6E657250573932s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib5069657263653032s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib53616E67696F7267693031s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib5363616C6173323031374C696E6561724465636F6D70s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib5363616C6173323031374C696E6561724465636F6D70s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib53444859323031374172746966616374s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib53444859323031374172746966616374s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib54616B6575636869484B3934s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib5761646C657232303132s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib44424C503A6A6F75726E616C732F6A66702F5761646C65723134s1
http://refhub.elsevier.com/S2352-2208(17)30148-7/bib506172616D6574657269736564594442483130s1

	Multiparty session types, beyond duality
	1 Introduction
	2 Multiparty sessions: standard calculus, types and typing contexts
	2.1 Multiparty session π-calculus
	2.2 Multiparty session types and typing contexts

	3 "Classic" multiparty session typing system and subject reduction
	3.1 "Classic" multiparty session typing, global types, and projections
	3.2 Subject reduction and consistency
	3.3 Limitations of consistency
	3.4 More "correct" but non-consistent examples
	3.4.1 Consistency vs. history-dependent branching
	3.4.2 Consistency vs. recursion


	4 Multiparty session typing, beyond duality and consistency
	4.1 Liveness
	4.2 A rely/guarantee typing system for multiparty sessions
	4.3 Subject reduction

	5 Comparison: rely/guarantee vs. "classic" multiparty session typing
	5.1 Global types, and beyond
	5.2 Leveraging typing context reductions
	5.3 From "new" to simpler "old" rules

	6 Conclusions and related work
	Acknowledgements
	Appendix A "Classic" multiparty session types: deﬁnitions
	A.1 Partial session types and projections
	A.2 Partial session types and duality

	Appendix B Typing context reductions
	Appendix C Liveness
	Appendix D Basic properties of typing rules
	Appendix E Substitution lemma
	Appendix F Subject reduction
	References


