
Event structure semantics of (controlled) reversible CCS

Eva Graversen, Iain Phillips, and Nobuko Yoshida

Imperial College London

Abstract. CCSK is a reversible form of CCS which is causal, meaning that ac-
tions can be reversed if and only if each action caused by them has already been
reversed; there is no control on whether or when a computation reverses. We pro-
pose an event structure semantics for CCSK. For this purpose we define a cat-
egory of reversible bundle event structures, and use the causal subcategory to
model CCSK. We then modify CCSK to control the reversibility with a rollback
primitive, which reverses a specific action and all actions caused by it. To define
the event structure semantics of rollback, we change our reversible bundle event
structures by making the conflict relation asymmetric rather than symmetric, and
we exploit their capacity for non-causal reversibility.

1 Introduction

Reversible process calculi have been studied in works such as [5,7,10,19]. One feature
of such reversible processes is their ability to distinguish true concurrency in a way
forward-only processes cannot [15]. For instance, using CCS notation, the processes
a|b and a.b + b.a are equivalent under interleaving semantics; however in a reversible
setting we can distinguish them by noting that a|b allows us to perform a followed by b
and then to reverse a, which is impossible for a.b + b.a. This motivates us to use event
structures [14] to describe truly concurrent semantics of a reversible process calculus.

Two reversible forms of CCS have been proposed: RCCS [7] and CCSK [19]. RCCS
creates separate memories to store past (executed) actions, while CCSK annotates past
actions with keys within the processes themselves. We formulate an event structure se-
mantics for CCSK rather than RCCS, since the semantics for past and future actions
can be defined in a similar manner, rather than having to encompass both processes and
memories. We note that Medić and Mezzina [12] showed that RCCS and CCSK can
be encoded in each other, meaning one can use their encoding in conjunction with our
event structure semantics to obtain an event structure semantics for RCCS.

Event structures have been used for modelling forward-only process calculi [2,4,21].
Cristescu et al. [6] used rigid families [3], related to event structures, to describe the
semantics of R� [5]. However, their semantics requires a process to first reverse all
actions to find the original process, map this process to a rigid family, and then ap-
ply each of the reversed memories in order to reach the current state of the process.
Aubert and Cristescu [1] used a similar approach to describe the semantics of RCCS
processes without auto-concurrency, auto-conflict, or recursion as configuration struc-
tures. By contrast, we map a CCSK process (with auto-concurrency, auto-conflict, and
recursion) with past actions directly to a (reversible) event structure in a strictly denota-
tional fashion.

1

Reversible forms of prime [16], asymmetric [16], and general [18] event structures
have already been defined, but the usual way of doing parallel composition of forward-
only prime (PES) and asymmetric event structures (AES) [20] does not translate into a
reversible setting, and general event structures are more expressive that is necessary for
modelling reversible CCSK. We therefore base our semantics on a reversible form of
bundle event structures (BESs) [11].

BESs were created with the specific purpose of allowing the same event to have
multiple conflicting causes, thereby making it possible to model parallel composition
without creating multiple copies of events. They do this by associating events with bun-
dles of conflicting events,X ↦ e, where in order for event e to happen one of the events
of X must have already happened.

This approach can be used for modelling cases such as Example 1.1 below, where
an action a has multiple options for synchronisation, either of which would allow the
process to continue with the action b. If we model each synchronisation or lack thereof
as a separate event then we clearly need to let b have multiple possible causes, which we
can accomplish using BESs, but not using PESs.

Example 1.1 (Process easily representable by a bundle event structure).
The CCS process a.b ∣ a can be described by a BES with

b
a

�
athe events a, �, a, b, the bundle {a, �} ↦ b, and the conflicts

a ♯ � and a ♯ �. The process cannot be represented by a PES or
AES without splitting some events into multiple events, due to
b having multiple possible causes.

We therefore define a category of reversible BESs (RBESs). Since the reversibil-
ity allowed in CCSK (as in RCCS) is causal, meaning that actions can be reversed if
and only if every action caused by them has already been reversed, we use the causal
subcategory of RBESs for defining a denotational semantics of CCSK.

Causal reversibility has the drawback of allowing a process to get into a loop do-
ing and undoing the same action indefinitely; there is no control on whether or when
a computation reverses. We modify CCSK to control reversibility by adding the roll-
back introduced for Roll-� in [9]. In Roll-CCSK every action receives a tag , and the
process only reverses when reaching a roll primitive, upon which the action tagged
with , together with all actions caused by it, are reversed. As in Roll-�, the rollback
in Roll-CCSK is maximally permissive, meaning that any subset of reached rollbacks
may be executed, even if one of them rolls back the actions leading to another. The op-
erational semantics of rollback work somewhat differently in Roll-CCSK from Roll-�,
since Roll-� has a set of memories describing past actions in addition to a �-calculus
process, while CCSK has the past actions incorporated into the structure of the process,
meaning that it is harder to know whether one has found all the actions necessary to
reverse. Roll-CCSK allows recursion using binding on tags. Mezzina and Koutava [13]
added rollback to a variant of CCS, though they use a set of memories to store their past
actions, making their semantics closer to Roll-�.

Once a roll event has happened, we need to ensure that not only are the events
caused by the -tagged action a able to reverse, but they cannot re-occur until the roll-
back is complete, at which point the roll event is reversed. This requires us to model

2

asymmetric conflict between roll and events caused by a (apart from roll itself).
Asymmetric conflict is allowed in extended BESs (EBESs) [11]. We define a category
of reversible EBESs (REBESs) and use them to give an event structure semantics of
rollback. Note that we do not restrict ourselves to the causal subcategory of REBESs,
since reversibility in Roll-CCSK is not necessarily causal. An action a tagged with
is a cause of roll , but we want a to reverse before roll does.

Contributions We formulate reversible forms of bundle, and extended bundle event
structures. We show that these form categories equipped with products and coproducts.
We extend CCSK with recursion and use the category of RBESs to define its event
structure semantics. We define the operational semantics of Roll-CCSK, which uses
rollback to control the reversibility in CCSK, showing that our rollbacks are both sound
(Theorem 6.6) and complete (Theorem 6.9) with respect to CCSK. We use the category
of REBESs to define the event structure semantics of Roll-CCSK. We prove operational
correspondence between the operational semantics and event structure semantics of both
CCSK and Roll-CCSK (Theorems 4.10, 7.5 and 7.7).

Outline Section 2 recalls the semantics of CCSK. Section 3 describes RBESs and their
category. Section 4 defines the event structure semantics of CCSK. Section 5 describes
REBESs and their category. Section 6 introduces Roll-CCSK and its operational seman-
tics and Section 7 uses REBESs to describe the event structure semantics of Roll-CCSK.

2 CCSK

CCSK was defined in [19], and distinguishes itself from most reversible process calculi
by retaining the structure of the process when actions are performed, and annotating past
actions with keys instead of generating memories. For instance we have a.P ∣ a.Q

�[n]
←←←←←←←←←←←←←←←→

a[n].P ∣ a[n].Q, with the key n denoting that a and a have previously communicated,
and we therefore cannot reverse one without reversing the other.

We call the set of actions of CCSK and let a, b, c range over , �, � range over
 ∪, and � range over ∪ ∪ {�}. We let be an infinite set of communication
keys and let m, n range over .

CCSK then has the following syntax, very similar to CCS:

P ∶∶= �.P ∣ �[n].P ∣ P0 + P1 ∣ P0|P1 ∣ P ⧵ A ∣ P [f] ∣ 0

Here P ⧵ A restricts communication on actions in A ∪ A and P [f] applies a function
f ∶ → to actions done by P .

Table 1 shows the forwards rules of the operational semantics of CCSK. As CCSK
is causal, the reverse rules can be derived from these. We use⇝ to denote a reverse ac-
tion, std(P) to denote that P is a standard process, meaning it contains no past actions,
and fsh[n](P) to denote that the key n is fresh for P . The rules are slightly reformu-
lated compared to [19] in that we use structural congruence ≡. The rules for structural
congruence are:

P ∣ 0 ≡ P P0 ∣ P1 ≡ P1 ∣ P0 P0 ∣ (P1 ∣ P2) ≡ (P0 ∣ P1) ∣ P2
P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

3

Table 1. Forwards semantics of CCSK [17]

std(P)

�.P
�[n]
←←←←←←←←←←←←←←→ �[n].P

P
�[m]
←←←←←←←←←←←←←←←→ P ′ m ≠ n

�[n].P
�[m]
←←←←←←←←←←←←←←←→ �[n].P ′

P ≡ Q
�[n]
←←←←←←←←←←←←←←→ Q′ ≡ P ′

P
�[n]
←←←←←←←←←←←←←←→ P ′

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 fsh[n](P1)

P0 ∣ P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 ∣ P1

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 P1
�[n]
←←←←←←←←←←←←←←→ P ′

1

P0 ∣ P1
�[n]
←←←←←←←←←←←←←→ P ′

0 ∣ P
′
1

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 std(P1)

P0 + P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 + P1

P
�[n]
←←←←←←←←←←←←←←→ P ′ �, � ∉ A

P ⧵ A
�[n]
←←←←←←←←←←←←←←→ P ′ ⧵ A

P
�[n]
←←←←←←←←←←←←←←→ P ′

P [f]
f (�)[n]
←←←←←←←←←←←←←←←←←←←←←←←→ P ′[f]

We extend CCSK with recursion as follows. We add process constants A
⟨

b̃
⟩

, to-
gether with definitions A(ã) = PA, where PA is a standard process and ã is a tuple
containing the actions of PA. This leads us to expand our definition of structural con-
gruence with A

⟨

b̃
⟩

≡ PA{b̃∕ã}.

Definition 2.1. A process P is reachable if there exists a standard process Q such that
Q(→ ∪ ⇝)∗P , and forwards-reachable if there exists a standard process Q such that
Q→∗ P .

Since CCSK is causal all reachable processes are forwards-reachable ([19], Propo-
sition 5.15; the proof still applies with recursion added).

3 Reversible Bundle Event Structures

Bundle event structures (BES) [11] extend prime event structures by allowing multiple
possible causes for the same event. They do this by replacing the causal relation with a
bundle set, so that if X ↦ e then exactly one of the events in X must have happened
before e can happen, and all the events in X must be in conflict.

We define reversible bundle event structures (RBES) by extending the bundle rela-
tion to map to reverse events, denoted e, and adding a prevention relation, such that if
e ⊳ e′ then e′ cannot be reversed from configurations containing e. We use e∗ to denote
either e or e.

Definition 3.1 (Reversible Bundle Event Structure). A reversible bundle event struc-
ture is a 5-tuple = (E, F ,↦, ♯,⊳) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the bundle set,↦ ⊆ 2E × (E ∪F), satisfiesX ↦ e∗ ⇒ ∀e1, e2 ∈ X.e1 ≠ e2 ⇒ e1 ♯
e2 and for all e ∈ F , {e} ↦ e;

4. the conflict relation, ♯ ⊆ E × E, is symmetric and irreflexive;
5. ⊳ ⊆ E × F is the prevention relation.

In order to obtain a category of RBESs, we define a morphism in Definition 3.2.

4

Definition 3.2 (RBES-morphism). Given RBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 =
(E1, F1,↦1, ♯1,⊳1), an RBES-morphism from 0 to 1 is a partial function f ∶ E0 →
E1 such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) ♯1 f (e′) then e ♯0 e′;
2. if f (e) = f (e′) and e ≠ e′ then e ♯0 e′;
3. for X1 ⊆ E1 if X1 ↦1 f (e)∗ then there exists X0 ⊆ E0 such that X0 ↦0 e∗,
f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) ≠ ⊥;

4. if f (e) ⊳1 f (e′) then e ⊳0 e′.

It can be checked that RBESs with this notion of morphism form a category RBES. We
define a product of RBESs in Definition 3.3. A coproduct can also be defined similarly
to other coproducts of event structures.

Definition 3.3 (Product ofRBESs). Let 0 = (E0, F0,↦0, ♯0,⊳0) and 1 = (E1, F1,↦1
, ♯1,⊳1) be reversible bundle event structures. Their product 0 × 1 is the RBES =
(E, F,↦, ♯,⊳) with projections �0 and �1 where:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0×∗F1 = {(e, ∗) ∣ e ∈ F0}∪{(∗, e) ∣ e ∈ F1}∪{(e, e′) ∣ e ∈ F0 and e′ ∈ F1};
3. for i ∈ {0, 1} we have (e0, e1) ∈ E, �i((e0, e1)) = ei;
4. for any e∗ ∈ E ∪ F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such

that Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′);

6. for any e ∈ E, e′ ∈ F , e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′).

Wewish to model RBESs as configuration systems (CSs), and therefore define a functor
from one category to the other in Definition 3.5. A CS consists of a set of events, some
of which are reversible, configurations of these events, and labelled transitions between
them, as described in Definition 3.4. We will later use the CSs corresponding to our
event structure semantics to describe the operational correspondence between our event
structure semantics and the operational semantics of CCSK.

Definition 3.4 (Configuration system [16]). A configuration system (CS) is a quadru-
ple = (E, F,C,→) where E is a set of events, F ⊆ E is a set of reversible events,
C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition

relation such that if X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y then:

– X, Y ∈ C, A ∩X = ∅; B ⊆ X ∩ F ; and Y = (X ⧵ B) ∪ A;

– for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′
←←←←←←←←←←←←←←←←←←←←←←←←→ Z

(A⧵A′)∪(B⧵B′)
←←←→ Y , meaning

Z = (X ⧵ B′) ∪ A′ ∈ C.

Definition 3.5 (From RBES to CS). The functor Cbr ∶ RBES → CS is defined as:

1. Cbr((E, F,↦, ♯,⊳)) = (E, F,C,→) where:
(a) X ∈ C if X is conflict-free;

5

(b) For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y if:

i. Y = (X ⧵ B) ∪ A; X ∩ A = ∅; B ⊆ X; and X ∪ A conflict-free;
ii. for all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A;
iii. for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
iv. for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

2. Cbr(f) = f .

Example 3.6 shows an RBES mapped to a CS. The config-
uration {b, c} is reachable despite b being required for c to
happen and c being a possible cause of b.

Example 3.6 (RBES).An RBES = (E, F,↦, ♯,⊳)where
E = {a, b, c}, F = {a, b}, a ♯ c, {a, c} ↦ b, {b} ↦ c
{a}↦ a, {b}↦ a, and {b}↦ b, gives the CS Cbr().

∅

{a} {b} {c}

{a, b} {b, c}

We define a causal variant of RBESs in Definition 3.7. The subcategory CRBES
consists of CRBESs and the RBES-morphisms between them.

Definition 3.7 (Causal RBES). = (E, F,↦, ♯,⊳) is a causal RBES (CRBES) if (1)
if e ⊳ e′ then either e ♯ e′ or there exists an X ⊆ E such that X ↦ e and e′ ∈ X, (2) if
X ↦ e and e′ ∈ X ∩ F , then e ⊳ e′, and (3) if X ↦ e then e ∈ X.

Proposition 3.8.

1. Given a CRBES, = (E, F,↦, ♯,⊳) and corresponding CSCrb() = (E, F,C,→),
any reachable X ∈ C is forwards-reachable.

2. If = (E, F,↦, ♯,⊳) is a CRBES and Cbr() = (E, F,C,→) then whenever X ∈

C, X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y and A ∪ B ⊆ F , we get a transition Y

B∪A
←←←←←←←←←←←←←←←←←←←→ X.

Since our motivation for defining RBESs was modelling reversible processes, we
need to be able to label our events with a corresponding action from a process. For this
we use a labelled RBES (LRBES).

Definition 3.9 (LabelledReversible Bundle Event Structure).An LRBES = (E, F,↦
, ♯,⊳, �,Act) consists of an RBES (E, F,↦, ♯,⊳), a set of labels Act, and a surjective
labelling function � ∶ E → Act.

Definition 3.10 (LRBES-morphism).Given LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)
and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), an LRBES-morphism f ∶ 0 → 1 is a partial
function f ∶ E0 → E1 such that f ∶ (E0, F0,↦0, ♯0,⊳0) → (E1, F1,↦1, ♯1,⊳1) is an
RBES-morphism and for all e ∈ E0, either f (e) = ⊥ or �0(e) = �1(f (e)).

4 Event Structure Semantics of CCSK

Having defined RBESs, we will now use them to describe the semantics of CCSK [19].
Unlike the event structure semantics of CCS [2, 21], our semantics will generate both
an event structure and an initial configuration containing all the events corresponding
to past actions. This means that if P → P ′ then P and P ′ will be described by the same
event structure with different initial states.

6

First we define the operators we will use in the semantics, particularly restriction,
parallel composition, choice, and action prefixes. Restriction is achieved by simply re-
moving any events associated with the restricted action.

Definition 4.1 (Restriction). Given an LRBES, = (E, F,↦, ♯,⊳, �,Act), restricting
 to E′ ⊆ E creates ↾ E′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. F ′ = F ∩ E′;
2. ↦′ =↦ ∩((E′) × (E′ ∪ F ′));
3. ♯′ = ♯ ∩(E′ × E′);

4. ⊳′ = ⊳ ∩ (E′ × F ′);
5. �′ = � ↾E′ ;
6. Act is the range of �.

Parallel composition uses the product of RBESs, labels as � any event corresponding
to a synchronisation, and removes any invalid events describing an impossible synchro-
nisation.

Definition 4.2 (Parallel). Given LRBESs 0 and 1, 0||1 = (E, F,↦, ♯,⊳, �,Act) ↾
{e ∣ �(e) ≠ 0} where: (E, F,↦, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) × (E1, F1,↦1, ♯1,⊳1);

�(e) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0(e0) if e = (e0, ∗)
�1(e1) if e = (∗, e1)

� if e = (e0, e1) and �0(e0) = �1(e1)

0 if e = (e0, e1) and �0(e0) ≠ �1(e1);
and Act = Act0 ∪ Act1 ∪ {0, �}.

Choice, which acts as a coproduct of LRBESs, simply uses the coproduct of RBESs,
and defines the labels as expected.

Definition 4.3 (Choice). Given LRBESs 0 and 1, 0&1 = (E, F,↦, ♯,⊳, �,Act)
where: (E, F,↦, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) + (E1, F1,↦1, ♯1,⊳1); �(ij(e)) = �j(e);
and Act = Act0 ∪ Act1.

Causally prefixing an action onto an event structure means the new event causes all
other events and is prevented from reversing by all other events.

Definition 4.4 (Causal Prefix). Given an LRBES = (E, F,↦, ♯,⊳, �,Act), an event
e ∉ E, and a label �, �(e). = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. E′ = E ∪ {e};
2. F ′ = F ∪ {e};
3. ↦′ =↦ ∪({{e}} × (E ∪ {e}));
4. ♯′ = ♯;

5. ⊳′ = ⊳ ∪ (E × {e});
6. �′ = �[e↦ �];
7. Act′ = Act ∪ {�}.

Now that we have defined the main operations of the process calculus, we define
the event structure semantics in Table 2. We do this using rules of the form ⦃P⦄l =
⟨ , Init, k⟩ wherein l is the level of unfolding, which we use to model recursion, is an
LRBES, Init is the initial configuration, and k ∶ Init → is a function assigning com-
munication keys to the past actions, which we use in parallel composition to determine
which synchronisations of past actions to put in Init.

7

Table 2. RBES-semantics of CCSK

⦃0⦄l = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃P0 + P1⦄l = ⟨0&1, Init, k⟩ where

For i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
Init = {(j, e) ∣ j ∈ {0, 1} and e ∈ Initj}
k((j, e)) = kj(e) if e ∈ Initj

⦃�.P⦄l =
⟨

�(e).(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

for e fresh for E where
⦃P⦄l =

⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

⦃�[m].P⦄l =
⟨

�(e).(E, F,↦, ♯,⊳, �,Act), Init ∪ {e}, k[e↦ m]
⟩

for e fresh for E where
⦃P⦄l =

⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

⦃P0 ∣ P1⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

where
For i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
(E, F,↦, ♯,⊳, �,Act) = 0||1
Init = {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{(∗, e1) ∣ e1 ∈ Init1 and ∄e0 ∈ Init0.�0(e0) = �1(e1) and k0(e0) = k1(e1)}∪
{(e0, ∗) ∣ e0 ∈ Init0 and ∄e1 ∈ Init1.�0(e0) = �1(e1) and k0(e0) = k1(e1)}

k(e) =

⎧

⎪

⎨

⎪

⎩

k0(e0) if e = (e0, ∗)
k1(e1) if e = (∗, e1)
k0(e0) if e = (e0, e1) – note that k0(e0) = k1(e1)

⦃P ⧵ A⦄l = ⟨ ↾ {e ∣ �(e) ∉ }, Init ∩ {e ∣ �(e) ∉ }, k ↾ {e ∣ �(e) ∉ }⟩ where
⦃P⦄l = ⟨ , Init, k⟩
 = A ∪ A

⦃P [f]⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

where
⦃P⦄l =

⟨

(E, F ,↦, ♯,⊳, �′,Act′), Init, k
⟩

Act = f (Act′)
� = f◦�′

⦃

A
⟨

b̃
⟩⦄

0 = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃

A
⟨

b̃
⟩⦄

l =
⦃

PA{b̃∕ã}
⦄

l−1 where A(ã) = PA

Note that the only difference between a future and a past action is that the event
corresponding to a past action is put in the initial state and given a communication key.
Example 4.5. The CCSK process a.b ∣ a (cf. Example 1.1) can
be represented by the RBES with events labelled a, a, �, and b,
the bundle {a, �} ↦ b, the conflicts a ♯ � and a ♯ �, and the
preventions b ⊳ a and b ⊳ �. b

a

�

a

We say that ⦃P⦄ = supl∈ ⦃P⦄l. This means we need to show that there exists
such a least upper bound of the levels of unfolding. As shown in [8], ordering closed
BESs by restriction produces a complete partial order. Since our LRBESs do not have
overlapping bundles (X ↦ e∗ and X′ ↦ e∗ implies X ≠ X′ or X ∩ X′ = ∅) they are
closed, and we can use a similar ordering.
Definition 4.6 (Ordering of LRBESs). Given LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,
Act0) and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), 0 ≤ 1 if 0 = 1 ↾ E0.

Proposition 4.7 (Unfolding).Given a reachable process P and a level of unfolding l, if
⦃P⦄l = ⟨ , Init, k⟩ and ⦃P⦄l−1 =

⟨

 ′, Init′, k′
⟩

, then ′ ≤ , Init = Init′, and k = k′.

8

In order to prove that our event structure semantics correspond with the operational
semantics for CCSK defined in [17] we first show that our event structures are causal.

Proposition 4.8. Given a process P such that ⦃P⦄ = ⟨ , Init, k⟩, is causal.

Structurally congruent processes will generate isomorphic event structures:

Proposition 4.9 (Structural Congruence). Given processes P and P ′, if P ≡ P ′,
⦃P⦄ = ⟨ , Init, k⟩, and ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exists an isomorphism
f ∶ → ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′(f (e)).

Finally we show in Theorem 4.10 that given a process P with a conflict-free initial
state, including any reachable process, there exists a transition P

�
←←←←←←←→ P ′ if and only if the

event structure corresponding to P is isomorphic to the event structure corresponding
to P ′ and an event e labelled � exists such that e is available in P ’s initial state, and P ′’s
initial state is P ’s initial state with e added.

Theorem 4.10. Let P be a process with ⦃P⦄ = ⟨ , Init, k⟩, = (E, F,↦, ♯,⊳, �,Act),
Cbr() = (E, F,C,→), and Init conflict-free. Then

1. if there exists a P ′ with ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ then

there exists a transition Init
{e}
←←←←←←←←←←←←←→ X and an isomorphism f ∶ → ′ such that

�(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′;

2. and if there exists a transition Init
{e}
←←←←←←←←←←←←←→ X then there exists a P ′ with ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

and a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ and an isomorphism f ∶ → ′ such

that �(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′.

Corollary 4.11. Let P be a process such that ⦃P⦄ = ⟨ , Init, k⟩. Then Init is forwards-
reachable in if and only if there exists a standard process Q such that Q→∗ P .

Since we showed in Proposition 4.8 that any event structures generated by processes
are causal, it follows that we get a similar correspondence between the reverse transitions
of processes and event structures.

5 Reversible Extended Bundle Event Structures

In CCSK a process can reverse actions at any time. Suppose that we wish to control
this reversibility by having a ‘rollback’ action that causes all actions, or all actions since
the last safe state, to be reversed before the process can continue, similar to the roll
command of [9]. RBESs can easily ensure that this rollback event roll is required for
other events to reverse; we simply say that {roll} ↦ e for all e. However, preventing
events from happening during the roll in RBESs requires symmetric conflict, which
wouldmean the other events also prevent roll from occurring. To solve a similar problem,
Phillips and Ulidowski [16] use reversible asymmetric event structures, which replace
symmetric conflict with asymmetric. But since these use the same notion of causality

9

∅

{a}

{�}
{a}

{a, ba}

{�, b�}

{a, a} {a, a, ba}

{roll }

{a, roll }{a, roll }

{a, ba, roll }

{a, a, roll }

{a, a, ba, roll }

{�, roll } {�, b� , roll }

Fig. 1. The reachable configurations of the REBES described in Example 5.1

as reversible prime event structures, they have trouble modelling concurrent processes
with synchronisation, as shown in Example 1.1.

Extended bundle event structures (EBES) [11] add asymmetric conflict; so defining
a reversible variant of these will allow us to model the above scenario.

Example 5.1 (The necessity of REBESs for modelling rollback).Consider a.b ∣ a .roll ,
where roll means undo the action labelled , that is a, and everything caused by it
before continuing. To model this we would need to expand the RBES from Exam-
ple 4.5 with a new event roll , and split b into two different events depending on
whether it needs to be reversed during the rollback or not. This would give us an RBES
({a, �, a, ba, b� , roll }, {a, �, a, ba, b� , roll },↦, ♯,⊳) where {a} ↦ ba, {�} ↦ b� ,
{a, �} ↦ roll , {roll } ↦ �, {roll } ↦ a, {roll } ↦ b� , a ♯ �, a ♯ �, ba ⊳ a,
b� ⊳ �, a ⊳ roll , and � ⊳ roll . This would indeed ensure that a and the events caused
by it could only reverse if one of the roll events had occurred, but it would not force
them to do so before doing anything else. For this we use asymmetric conflict: roll ⊳a,
roll ⊳�, roll ⊳b� , giving us a CS with the reachable configurations shown in Figure 1.

We define a reversible version of EBESs in Definition 5.2, treating the asymmetric
conflict similarly to RAESs in [16].

Definition 5.2 (Reversible Extended Bundle Event Structure). An REBES is a 4-
tuple = (E, F,↦,⊳) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. ↦ ⊆ 2E × (E ∪ F) is the bundle set, satisfying X ↦ e ⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒
e1 ⊳ e2), and for all e ∈ F , {e}↦ e;

4. ⊳ ⊆ E × (E ∪ F) is the asymmetric conflict relation, which is irreflexive.

In order to define REBES-morphisms, we extend the RBESmorphism in the obvious
way, letting the condition on preventions also apply to prevention on forwards events.
This gives us a categoryREBES, in which we can define products and coproducts much
like we did for RBESs, treating asymmetric conflict the same as we did symmetric.

We again model REBESs as CSs, defining configurations as sets of events on which
⊳ is well-founded, and extending the requirements of prevention in transitions to for-
wards events.

10

Example 5.3 shows an REBES, which cannot be represented by an RBES, since
we get a transition ∅ → {a}, but no {b} → {a, b}, despite {a, b} being a configuration.

Example 5.3 (REBES). An REBES = (E, F,↦,⊳)
where E = {a, b, c}, F = {a, b}, {a, c} ↦ b, {b} ↦ c
{a} ↦ a, {b} ↦ a, {b} ↦ b, a ⊳ c, c ⊳ a, and b ⊳ a gives
the CS Cer() in the diagram. ∅

{a} {b} {c}

{a, b} {b, c}

Since we are using our REBESs for modelling the semantics of rollback in CCSK, we
need a labelled variant, which we can define much as we did labelled RBESs.

6 Roll-CCSK

The operational semantics for roll-� [9] are not translatable directly to CCSK, as they
make use of the fact that one can know, when looking at a memory, whether the com-
munication it was associated with was with another process or not, and therefore, for a
given subprocess P and a memory m, one knows whether all the memories and subpro-
cesses caused bym are part of P . In CCSK, this is not as easy, as the roll in a subprocess
� [n]… roll , where is a tag denoting which rollback rolls back which action, may or
may not require rolling back the other end of the � communication, and all actions caused
by it. We therefore need to check at every instance of parallel composition whether any
communication has taken place, and if so roll back those actions and all actions caused
by them. This may include rolling back additional actions from the subprocess contain-
ing the roll as in a[n1].b[n2] ∣ c[n3].(a [n1].roll ∣ b[n2]), where it does not become
clear that b[n2] needs to be reversed during the roll until the outer parallel composition.
Unlike [9], we therefore do not provide low-level operational semantics for Roll-CCSK,
only providing high-level operational semantics in this section, and low-level denota-
tional event structure semantics in Section 7.

The syntax of Roll-CCSK is as follows:

P ∶∶= � .P ∣ � [n].P ∣ P0+P1 ∣ P0|P1 ∣ P ⧵A ∣ P [f] ∣ 0 ∣ roll ∣ rolling ∣ (�)P

Most of the syntax is the same as CCSK and CCS, but adding tags and rolls as
described above, and rolling , which denotes a roll in progress, the necessity of which
is justified later. From now on we will use �.P to denote � .P where no roll exists in P .
Before presenting the operational semantics of rollback, we define causal dependence
and projection similarly to [9], on which we base our own semantics.

Definition 6.1 (Causal dependence). Let P be a process and Γ be the set of tags in P .
Then the binary relation ≤P is the smallest relation satisfying

– if there exists a process P ′ and past actions � [n] and �′ [m] such that � [n].P ′ is
a subprocess of P and �′ [m] occurs in P ′ then ≤P ′;

– if there exist past actions � [n] and �′ [n] in P with the same keys then ≤P ′;
– ≤P is reflexively and transitively closed.

11

Table 3. The main rules for rollback in the operational semantics of Roll-CCSK

(start ROLL) roll
start roll

rolling (par ROLL)
P0

roll
P ′
0 C = { ′ ∣ ≤P0 ∣P1

′}

P0 ∣ P1
roll

(P0 ∣ P1) C

(ROLL) rolling
roll

roll (act ROLL)
P

roll
P ′ C = { ′ ∣ ≤� [n].P

′}

� [n].P
roll

� .P C

(bind ROLL)
P

roll
P ′

(�)P
roll bound

(�)P ′
(bind ROLL struct)

P ≡ Q
roll bound

Q′ ≡ P ′

P
roll bound

P ′

Definition 6.2 (Projection). Given a process P and a set of tags C , P C is defined as:
(� [n].P) C = � [n].(P C) if ∉ C 0 C = 0 (P ⧵ A) C = (P C) ⧵ A
(� [n].P) C = � .(P C) if ∈ C roll C = roll (P0 ∣ P1) C = P0 C ∣ P1 C
rolling C = rolling if ∉ C A

⟨

b̃, ̃
⟩

 C = A
⟨

b̃, ̃
⟩

(�)P C = (�)(P C)
rolling C = roll if ∈ C (� .P) C = � .(P C) (P [f]) C = P C [f]
(P0 + P1) C = P0 C + P1 C

Much as in [9] we perform our rollback in two steps, the first triggering the rollback,
and the second actually performing the rollback, in order to ensure that we can start
multiple rollbacks at the same time. For instance, in the process (a .(d.0 ∣ c.roll) ∣
b′ .(c ∣ d.roll ′) ∣ a ∣ b) ⧵ {a, b, c, d} we will otherwise never be able to roll all the
way back to the beginning, as rolling back a will stop us from reaching roll ′ and vice
versa.

Table 3 shows the most important rules for reversing actions in Roll-CCSK. The
remaining rules permit the roll start and roll to propagate in the same way as actions
in CCSK (and past tag bindings), with the exception that in the rule for choice, if one
path has already triggered a roll, the other cannot trigger or perform a roll or a forwards
action. The semantics of forwards actions are otherwise identical to CCSK, except again
propagating past the tag bindings. By contrast, roll bound does not propagate. We ex-
tend our process definitions A(ã) = PA to also include a tuple of tags in PA, giving us
A(ã, ̃) = PA, where PA is a standard process containing no instances of rolling .

Since we want to be able to handle recursion without confusing instances of multiple
actions or rollbacks being associated with the same tags, we introduce binding of tags
(�), which allows us to avoid clashes. We use f t(P) to denote the free tags of P . To
ensure that we cannot perform roll in Q ∣ (�)P without rolling back all actions in Q
caused by , we only have rule (bind ROLL struct) for bound tags, meaning that to roll
back a bound tag we must use structural congruence to move it to the outermost layer
of the process. This is also why we have the two rules allowing us to move (�) from
one side of an action with a different tag to the other.

We also change the rule for applying definitions to ensure all tags are fresh for the
unfolded process. This is again to prevent the process from unfolding more rollbacks for

12

a previous action, such as in a .A⟨a, ⟩ with A(b, �) = b� .(A ⟨b, �⟩ ∣ roll �), where there
would otherwise be confusion about how far back one should roll each time.

Structural congruence for bound tags:
� (� ′)P ≡ (� ′)�P if ≠ ′ � [n](� ′)P ≡ (� ′)� [n]P if ≠ ′
((� ′)P) ∣ Q ≡ (� ′)(P ∣ Q) if ∉ f t(Q) ((� ′)P) +Q ≡ (� ′)(P +Q) if ∉ f t(Q)
(� ′)(P ⧵ A) ≡ ((� ′)P) ⧵ A (�)(P [f]) ≡ ((�)P)[f]
A
⟨

b̃, �̃
⟩

≡ (� �̃)PA{b̃,�̃∕ã,̃} if A(ã, ̃) = PA (�)(� ′)P ≡ (� ′)(�)P

Example 6.3 (Bound Tags). Consider the process P = a [n].(�)b .roll . This can

clearly do the actionsP
b[m]
←←←←←←←←←←←←←←←←←→ a [n].(�)b [m].roll

start roll
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ a [n](�).b [m].rolling .

However, when actually performing the rollback, we need to use the structural congru-
ence rule to �-convert the bound into � and move the binding to before a [n] because
roll bound does not propagate through a [n]. Then we can do a [n].(�)b [m].rolling ≡

(� �)a [n].b�[m].rolling �
roll bound

(� �)a [n].b� .roll �.

In addition, to ensure every rollback is associated with exactly one action, we define
a consistent process.

Definition 6.4 (Consistent process). A Roll-CCSK process P is consistent if

1. there exists a standard process Q with no subprocess rolling such that Q →∗ P ;
2. there exists P ′ ≡� P , such that

(a) for any tag , P ′ has at most one subprocess roll or rolling ;
(b) for any tag , there exists exactly one � and at most one n such that � or � [n]

occur in P ′;
(c) if roll is a subprocess of P ′ then there exists an action � and process P ′′ such

that roll is a subprocess of P ′′ and either � .P ′′ is a subprocess of P ′ or there
exists a key n such that � [n].P ′′ is a subprocess of P ′;

3. if A
⟨

b̃, �̃
⟩

is a subprocess of P defined as A(ã, ̃) = PA, then PA is consistent.

Proposition 6.5. Let P be a consistent process, P ′ be a process, and either P ≡ P ′,
P → P ′, or P ⇝ P ′. Then P ′ is consistent.

We are then ready to prove Theorem 6.6, stating that for consistent subprocesses, any
rollback can be undone by a sequence of forwards actions.

Theorem 6.6 (Loop (Soundness)). Let P0 and P1 be consistent processes containing

no subprocesses rolling , and such that P0
start roll

P ′0
roll bound

P1. Then P1 →∗ P0.

Wewill from now on use→CCSK and⇝CCSK to distinguish CCSK-transitions from
Roll-CCSK transitions, which will continue to be denoted by arrows without subscripts.
The last thing we need to prove about our rollback operational semantics before moving
on to event structure semantics is Theorem 6.9, stating that (1) our rollbacks only reverse
the actions caused by the action we are rolling back according to CCSK, and (2) our
rollbacks are maximally permissive, meaning that any subset of reached rollbacks may
be successfully executed.

13

Definition 6.7 (Transforming Roll-CCSK to CCSK). We define a function, �, which
translates a Roll-CCSK process into CCSK:

�(roll) = 0 �(� [n].P) = �[n].�(P) �(� .P) = �.�(P) �((�)P) = �(P)
� is otherwise homomorphic on the remainder.

Definition 6.8. Let P be a CCSK process and T = {m0, m1,…mn} be a set of keys. We

say that P ⇝T P ′ if there exist actions �, � and a tag m such that P
�[m]

CCSK P ′ and
�[mi] ≤P �[m] for some mi ∈ T .

Theorem 6.9 (Completeness). Let P be a consistent Roll-CCSK process with sub-
processes �00 [m0]… roll 0, �11 [m1]… roll 1, … , �nn [mn]… roll n. Then for all
T ⊆ {m0, m1,…mn}, if �(P) ⇝∗

T P ′ ̸⇝T then there exists a Roll-CCSK process P ′′
such that �(P ′′) = P ′ and P ⇝∗ P ′′.

7 Event Structure semantics of Roll-CCSK

Having proved that our rollback semantics behave as intended, we are ready to translate
them into event structure semantics in Table 4. We use labelled REBESs.

To model roll as an event structure, we have two events, one which triggers the
roll, labelled start roll , and another, roll , which denotes that the roll is in progress,
allowing the events caused by the associated action to begin reversing. When prefixing
a process P with an action � , we now need to ensure that any action in P , and any
start roll associated with such an action, will be reversed by any roll in P , and that the
rollback does not stop, signified by the event labelled roll being reversed, until those
actions have all been reversed.

When composing the LREBESs of two processes, we also create a separate event for
each set of causes it might have (Definition 7.1). This allows us to say that an event can
be rolled back if it was caused by a communication with one of the events being rolled
back, but not if the communication went differently. Consider the process a .roll ∣ a.b ∣
a′ .roll ′. In this case we will want b to roll back if (a , a) and roll have happened, or
if (a′ , a) and roll ′ have happened, but not if any other combination of the four events
has happened, something which bundles cannot express unless b is split into multiple
events. In addition, we use the sets of causes to ensure that if e is in e′’s set of causes
and eroll can cause e to reverse, then eroll can cause e′ to reverse.

Definition 7.1. Given an LREBES, = (E, F,↦,⊳, �,Act), the set of possible causes
for an event e ∈ E, cause(e) = X, contains minimal sets of events such that if x ∈ X
then:

1. if x′ ↦ e then there exists e′ such that x′ ∩ x = {e′};
2. if e′ ∈ x then there exists x′ ∈ cause(e′) such that x′ ⊆ x;
3. if e1, e0 ∈ X then we cannot have both e0 ⊳ e1 and e1 ⊳ e0.

When giving the semantics of restriction, we remove not only the actions associated
with the restricted labels, but also the actions caused by them. This is because we want
the event structures generated by P and 0 ∣ P always to be isomorphic; if P = (a.b)⧵{a},

14

we will otherwise get an event b, which, having no possible causes, disappears once we
put P in parallel with any other process, since this involves generating a b event for each
set of possible causes.

Definition 7.2 (Removing labels and their dependants).Given an event structure =
(E, F,↦,⊳, �,Act) and a set of labels A ⊆ Act, we define �(A) = X as the maximum
subset ofE such that if e ∈ X then �(e) ∉ A, and if e ∈ X then there exists x ∈ cause(e)
such that x ⊆ X.

We give the REBES-semantics of Roll-CCSK in Table 4.
Much as we did in Proposition 4.7, we need to show that there exists a least upper

bound of the event structures resulting from unfolding recursion. For this we first show
that our action prefix, parallel composition, and tag binding are monotonic.

Proposition 7.3 (Unfolding).Given a consistent process P and a level of unfolding l, if
⦃P⦄l = ⟨ , Init, k⟩ and ⦃P⦄l−1 =

⟨

 ′, Init′, k′
⟩

, then ′ ≤ , Init = Init′, and k = k′.

Structurally congruent processes result in isomorphic event structures:

Proposition 7.4 (Structural Congruence). Given consistent Roll-CCSK-processes P
and P ′, if P ≡ P ′, ⦃P⦄ = ⟨ , Init, k⟩, and ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exists an
isomorphism f ∶ → ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′(f (e)).

Table 4: LREBES-semantics of Roll-CCSK

⦃roll ⦄l = ⟨({er, et}, {er, et},↦,⊳, �,Act), ∅, ∅⟩ where:
{er} ↦ er, {et} ↦ et {et} ↦ er, and {er} ↦ et et ⊳ er and er ⊳ et

�(e) =

{

roll if e = er
start roll if e = et

Act = {roll , start roll }

⦃rolling ⦄l = ⟨({er, et}, {er, et},↦,⊳, �,Act), {et}, ∅⟩ where:
{er}↦ er, {et} ↦ et {et} ↦ er, and {er} ↦ et et ⊳ er and er ⊳ et

�(e) =

{

roll if e = er
start roll if e = et

Act = {roll , start roll }

⦃� .P⦄l = ⟨(E, F ,↦,⊳, �,Act), Init, k⟩ where:
⦃P⦄ = ⟨(EP , FP ,↦P ,⊳P , �P ,ActP), Init, k⟩
E = EP ∪ {e�} where e� fresh

ERoll =
{

e
|

|

|

|

|

�P (e) ∈ {roll ′, roll bound} or
�P (e) ∈ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P }

}

F = FP ∪ {e�}
X ↦ e if X ↦P e or X = {e�}, e ∈ EP , and �P (e) ≠ roll ′
X ↦ e if X = {e}, or e = e� and X = {e′ ∣ �P (e′) = roll }, or
e ∈ ERoll and X ↦P e, or e ∉ ERoll, {e} ≠ X′ ↦P e, and X = X′ ∪ {e′ ∣ �P (e′) = roll }
⊳ = ⊳P ∪ (ERoll × {e�}) ∪ ({e�} × {er ∣ �P (er) = roll })∪
({er ∣ �P (er) = roll } × (ERoll ∪ {e�}))
Act = ActP ∪ {�}

For all e ∈ E, �(e) =

{

�P (e) if e ∈ EP
� if e = e�

15

Table 4: LREBES-semantics of Roll-CCSK (continued)

⦃� [m].P⦄l = ⟨(E, F ,↦,⊳, �,Act), Init, k⟩ where:
⦃� .P⦄ =

⟨

(E, F,↦,⊳, �,Act), Init′, k′
⟩

{e�} = {e ∈ E ∣ �(a) = � and ∄X ⊆ E.X ↦ e�}

Init = Init′ ∪ {e�} k(e) =

{

k′(e) if e ∈ InitP
m if e = e�

⦃

A
⟨

b̃, �̃
⟩⦄

0 = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃

A
⟨

b̃, �̃
⟩⦄

l =
⦃

(� �̃)PA{b̃,�̃∕ã,̃}
⦄

l−1 where A ⟨ã, ̃⟩ = PA and l ≥ 1
⦃P0 ∣ P1⦄l = ⟨(E, F,↦,⊳, �,Act), Init, k⟩ where:
⦃Pi⦄ = i = (Ei, Fi,↦i,⊳i, �i,Acti) for i ∈ {0, 1}; 0||1 = (E×, F×,↦×,⊳×, �×,Act×)
Init× = {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{(∗, e1) ∣ e1 ∈ Init1, ∄e0 ∈ Init0.�0(e0) = �1(e1), and k0(e0) = k1(e1)}∪
{(e0, ∗) ∣ e0 ∈ Init0, ∄e1 ∈ Init1.�0(e0) = �1(e1), and k0(e0) = k1(e1)}

Eaction =
{

(X, e)
|

|

|

|

|

e ∈ E×, �×(e) ∉ {roll , roll bound},
X ∈ cause(e), and ∀e′ ∈ X.∃X′ ∈ cause(e′).X′ ⊆ X

}

Eroll = {e ∣ e ∈ E× and �×(e) ∈ {roll , roll bound}}
E = Eaction ∪ Eroll; Faction = {(X, e) ∈ E ∣ e ∈ F×}; Froll = Eroll ∩ F×; F = Faction ∪ Froll
We define �0 and �1 such that for (X, (e0, e1)) ∈ Ea, �i((X, (e0, e1))) = ei, and
for (e0, e1) ∈ Er, �i(e0, e1) = ei
{(X, e′) ∣ X′ ⊆ X}↦ (X′, (e0, e1)) if e′ ∈ X′

X ↦ (e0, e1) if there exists X′ such that X′ ↦× e and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}

X ↦ e if X = {e} or e = (X′, e×) and X =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦ �i(e)
or ∃e× ∈ X′.Xi ↦ �i(e×)
, and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

or

e = (e0, e1) and there exists X′ such that X′ ↦× e and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}
e ⊳ e′∗ if there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′)∗, or
�i(e) = �i(e′) ≠ ⊥, and e ≠ e′, e′∗ = e′, or e ≠ e′, and e ∈ X ↦ e′, or e′∗ = e′ and e, e′ ∈ Er
Act = Act0 ∪ Act1 ∪ {�}

�(e) =

⎧

⎪

⎨

⎪

⎩

� if e = (X, (e0, e1))
�0(e0) if e = (X, (e0, ∗)) or e = (e0, ∗)
�1(e1) if e = (X, (∗, e1)) or e = (∗, e1)

Init = {(X, e) ∣ X ∪ {e} ⊆ Init×} ∪ (Eroll ∩ Init×)

k(e) =

⎧

⎪

⎨

⎪

⎩

k0(e0) if e = (X, (e0, ∗))
k1(e1) if e = (X, (∗, e1))
k0(e0) if e = (X, (e0, e1)) – note that k0(e0) = k1(e1)

⦃(�)P⦄l = ⟨(E, F ,↦,⊳, �,Act), Init, k⟩ where:
⦃P⦄ = ⟨(E, F ,↦,⊳, �P ,ActP), Init, k⟩ Act = ActP ∪ {roll bound} ⧵ {roll }

For all e ∈ E, �(e) =

{

�P (e) if �P (e) ≠ roll
roll bound if �P (e) = roll

⦃P ⧵ A⦄l =
⟨

 ↾ �(A ∪ A), Init ∩ �(A ∪ A), k ↾ �(A ∪ A)
⟩

where ⦃P⦄l = ⟨ , Init, k⟩

We next show that process P has a transition P
�
←←←←←←←→ P ′ if and only if P and P ′

correspond to isomorphic event structures, and there exists a �-labelled transition from
the initial state of P ’s event structure to the initial state of P ′’s event structure.

16

Theorem 7.5. Let P be a consistent Roll-CCSK process such that ⦃P⦄ = ⟨ , Init, k⟩,
 = (E, F,↦,⊳, �,Act), Init is conflict-free, and Cer() = (E, F,C,→). Then

1. if there exists a process P ′ with ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and a transition P
� [m]
←←←←←←←←←←←←←←←←←←←←←→ P ′

then there exists a transition Init
{e}
←←←←←←←←←←←←←→ X and an isomorphism f ∶ → ′ such that

�(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′;
2. and if there exists a transition Init

{e}
←←←←←←←←←←←←←→ X then there exists a processP ′ with⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, a transition P
� [m]
←←←←←←←←←←←←←←←←←←←←←→ P ′, and an isomorphism f ∶ → ′ such that

�(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′.
We then prove the same correspondence for start roll transitions.

Proposition 7.6. LetP be a consistent Roll-CCSK process such that⦃P⦄ = ⟨ , Init, k⟩,
 = (E, F,↦,⊳, �,Act), Init is conflict-free, and Cer() = (E, F,C,→). Then

1. if there exists a process P ′ with ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and a transition P
start roll

P ′ then there exists a transition Init
{e}
←←←←←←←←←←←←←→ X and an isomorphism f ∶ → ′ such

that �(e) = start roll , f◦k′ = k, and f (X) = Init′;
2. and if there exists a transition Init

{e}
←←←←←←←←←←←←←→ X then there exists a processP ′ with⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, a transition P
start roll

P ′, and an isomorphism f ∶ → ′ such
that �(e) = start roll , f◦k′ = k, and f (X) = Init′.

We finally show that a process P can make a roll transition if and only if the REBES
corresponding to P can perform a roll event, followed by reversing all the events cor-
responding to actions and start roll’s with tags causally dependent on , and then finally
reversing the roll event.
Theorem 7.7. Let P be a consistent process with ⦃P⦄ = ⟨ , Init, k⟩, = (E, F,↦
,⊳, �,Act), Cer() = (E, F,C,→), and Init conflict-free, and let � ∈ {roll , bound roll}
be a roll label. Then

1. if there exists a process P ′ with ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and a transition P
�
P ′,

then there exist events er and e0, e1,… en such that Init
{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→

Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone and there exists an isomorphism f ∶ → ′ such that �(er) = �,

{e0, e1,… en} = {e ∣ ∃ ′. ≤P ′ and either �(e)′ [k(e)] occurs in P or �(e) =
start roll ′ and rolling ′ occurs in P }, f◦k′ = k ↾ {e ∣ f (e) ∈ Init′}, and
f (Xdone) = Init′;

2. and if there exist events er and e0, e1,… en such that Init
{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→

Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone then there exists a process P ′ with ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

and

a transition P
�
P ′ and there exists an isomorphism f ∶ → ′ such that

�(er) = �, {e0, e1,… en} = {e ∣ ∃ ′. ≤P ′ and either �(e)′ [k(e)] occurs in
P or �(e) = start roll ′ and rolling ′ occurs in P }, f◦k′ = k ↾ {e ∣ f (e) ∈ Init′},
and f (Xdone) = Init′.

17

8 Conclusion

We have defined a category of reversible bundle event structures, and used the causal
subcategory to model uncontrolled CCSK. Unlike previous work giving a truly concur-
rent semantics of a reversible process calculus using rigid families [6] or configuration
structures [1], we have used the way CCSK handles past actions to generate both the
event structure and the initial state directly from the process, rather than needing to first
undo past actions to get the original process and from there the rigid family or configu-
ration structure, and then redo the actions to get the initial state.

We have proposed a variant of CCSK called Roll-CCSK, which uses the rollback
described in [9] to control its reversibility. We have defined a category of reversible ex-
tended bundle event structures, which use asymmetric rather than symmetric conflict,
and used this category to model Roll-CCSK. Unlike in the case of CCSK, when mod-
elling rollbacks in Roll-CCSK we use non-causal reversible event structures.

We have proved operational correspondence between the operational and event struc-
ture semantics of both CCSK (Theorem 4.10) and Roll-CCSK (Theorems 7.5 and 7.7).

Future work: We would like to provide event structure semantics for other reversible
calculi. These mostly handle past actions using separate memories, which may prove
challenging, particularly if we wish to avoid basing the semantics on finding the fully
reversed process.

We also intend to explore the relationship between equivalences of processes and
equivalences of event structures.

Acknowledgements: We thank the referees of RC 2018 for their helpful comments. This
work was partially supported by EPSRC DTP award; EPSRC projects EP/K034413/1,
EP/K011715/1, EP/L00058X/1, EP/N027833/1 and EP/N028201/1; and EU COST Ac-
tion IC1405.

References

1. Aubert, C., Cristescu, I.: Contextual equivalences in configuration structures and reversibility.
JLAMP 86(1), 77 – 106 (2017). https://doi.org/10.1016/j.jlamp.2016.08.004

2. Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS
and SCCS. In: de Bakker, J.W., de Roever,W.P., Rozenberg, G. (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. pp. 411–427. No. 354 in
LNCS, Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/BFb0013028

3. Castellan, S., Hayman, J., Lasson,M.,Winskel, G.: Strategies as concurrent processes. Electr.
Notes Theor. Comput. Sci. 308, 87–107 (2014). https://doi.org/10.1016/j.entcs.2014.10.006

4. Crafa, S., Varacca, D., Yoshida, N.: Event Structure Semantics of Parallel Extrusion in the
Pi-Calculus. In: Birkedal, L. (ed.) FOSSACS. pp. 225–239. No. 7213 in LNCS, Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_15

5. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible pi-
calculus. In: IEEE Symposium on Logic in Computer Science. pp. 388–397. LICS ’13, IEEE
Computer Society, Washington, DC, USA (2013). https://doi.org/10.1109/LICS.2013.45

18

6. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for the reversible �-calculus. In: RC
2016. LNCS, vol. 9720, pp. 3–19. Springer (2016). https://doi.org/10.1007/978-3-319-40578-
0_1

7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N.
(eds.) CONCUR. pp. 292–307. No. 3170 in LNCS, Springer, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28644-8_19

8. Fecher, H., Majster-Cederbaum, M., Wu, J.: Bundle event structures: A revised cpo ap-
proach. Information Processing Letters 83(1), 7 – 12 (2002). https://doi.org/10.1016/S0020-
0190(01)00310-6

9. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Controlling Reversibility in Higher-
Order Pi. In: Katoen, J.P., König, B. (eds.) CONCUR. pp. 297–311. No. 6901 in LNCS,
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_20

10. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR. pp. 478–493. No. 6269 in LNCS, Springer, Berlin, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33

11. Langerak, R.: Transformations and Semantics for LOTOS. Ph.D. thesis, Universiteit Twente
(1992), https://books.google.com/books?id=qB4EAgAACAAJ

12. Medić, D., Mezzina, C.A.: Static VS Dynamic Reversibility in CCS. In: Devitt, S., Lanese,
I. (eds.) RC 2016. LNCS, vol. 9720, pp. 36–51. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-40578-0_3

13. Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibility. In: TASE.
pp. 1–8 (Sept 2017). https://doi.org/10.1109/TASE.2017.8285635

14. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. In: Kahn, G.
(ed.) Semantics of Concurrent Computation. pp. 266–284. No. 70 in LNCS, Springer, Berlin,
Heidelberg (1979). https://doi.org/10.1007/BFb0022474

15. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electr. Notes Theor.
Comput. Sci. 192(1), 93–108 (2007). https://doi.org/10.1016/j.entcs.2007.08.018

16. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. JLAMP
84(6), 781 – 805 (2015). https://doi.org/10.1016/j.jlamp.2015.07.004, Special Issue on Open
Problems in Concurrency Theory

17. Phillips, I., Ulidowski, I., Yuen, S.: A Reversible Process Calculus and the Modelling of the
ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds.) RC. pp. 218–232. No. 7581 in
LNCS, Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18

18. Phillips, I., Ulidowski, I., Yuen, S.: Modelling of Bonding with Processes and Events. In:
Dueck, G.W., Miller, D.M. (eds.) RC. pp. 141–154. No. 7948 in LNCS, Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3_12

19. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Algebraic and Logic
Programming 73(1-2), 70–96 (2007). https://doi.org/10.1016/j.jlap.2006.11.002

20. Vaandrager, F.W.: A simple definition for parallel composition of prime event structures. CS
R 8903, Centre forMathematics andComputer Science, P. O. box 4079, 1009ABAmsterdam,
The Netherlands (1989)

21. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen, M.,
Schmidt, E.M. (eds.) ICALP. pp. 561–576. No. 140 in LNCS, Springer, Berlin, Heidelberg
(1982). https://doi.org/10.1007/BFb0012800

A Section 3

A.1 BES
Definition A.1 (Bundle Event Structures [11]). A bundle event structure (BES) is a
triple = (E,↦, ♯) where:

19

1. E is the set of events;
2. ↦⊆ 2E×E is the bundle set, satisfyingX ↦ e ⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒ e1 ♯ e2);
3. ♯ ⊆ E × E is the irreflexive; and symmetric conflict relation.

Definition A.2 (BES configuration [11]). Given a BES = (E,↦, ♯), a configuration
of is a set X ⊆ E such that:

1. X is conflict-free;
2. there exists a sequence e1,… , en (n ≥ 0), such that X = {e1,… , en} and for all i,
1 ≤ i ≤ n, if Y ↦ ei+1 then {e1,… , ei} ∩ Y ≠ ∅.

A category of BESs has not, to our knowledge, been defined, so we define a BES-
morphism in Definition A.3. We want to say that the events of E0 can behave the same
way as those they synchronise with inE1, but the bundle sets mean this is a bit trickier to
describe than in other event structures. If we said that f (X) ↦ f (e)∗ implies X ↦ e∗,
we would be requiring X′ ↦ e∗ for every X′ = X ∪ X′′ where e ∈ X′′ ⇒ f (e) = ⊥,
and by extension e ♯ e′ if f (e) = f (e′) = ⊥. As we consider this too restrictive, we
came up with the constraint seen in Definition A.3.

Definition A.3 (BES-morphism). Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1
, ♯1), a BES-morphism from 0 to 1 is a partial function f ∶ E0 → E1 such that and
for all e, e′ ∈ E0:

1. if f (e) ♯1 f (e′) then e ♯0 e′;
2. if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ♯0 e′;
3. forX1 ⊆ E1 ifX1 ↦1 f (e) then there existsX0 ⊆ E0 such thatX0 ↦0 e, f (X0) ⊆
X1, and if e′ ∈ X0 then f (e′) ≠ ⊥.

We show that BES-morphisms preserve configurations.

Proposition A.4. Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1) and BES-
morphism f ∶ E0 → E1, if X ⊆ E0 is a configuration of 0, then f (X) is a con-
figuration of 1
Proof. We show that f (X) fulfils the conditions of Definition A.2:

1. For any e, e′ ∈ X, if f (e) ♯1 f (e′), then e ♯0 e′, and therefore if X is conflict-free
then f (X) is conflict-free.

2. There exists a sequence e1,… , en (n ≥ 0), such that X = {e1,… , en} and for
all i, 1 ≤ i ≤ n, if Y ↦ ei+1 then {e1,… , ei} ∩ Y ≠ ∅. Obviously f (X) =
{f (e1),… , f (en)}, and for all i, if Y1 ↦ f (ei+1), then there exists Y0 such that
Y0 ↦ ei+1, f (Y0) ⊆ Y1, and if e′ ∈ Y0, then f (e′) ≠ ⊥. Since Y0 ∩ {e1,… , ei} ≠ ∅,
we obviously get that Y1 ∩ {f (e1),… , f (ei)} ≠ ∅.

Proposition A.5. BES consisting of BESs and BES-morphisms is a category

Proof. Partial functions are associative and f (e) = e functions as a an identity arrow,
so we need to show that the morphisms are composable:

If 0 = (E0,↦0, ♯0), 1 = (E1,↦1, ♯1), and 2 = (E2,↦2, ♯2) are BESs and f ∶
E0 → E1 and g ∶ E1 → E2 are morphisms, we show that f◦g ∶ E0 → E2 is also a
morphism:

20

1. If g(f (e)) ♯2 g(f (e′)) then f (e) ♯1 f (e′), and therefore e ♯0 e′.
2. If g(f (e)) = g(f (e′)) and e ≠ e′, then either f (e) = f (e′), in which case e ♯0 e′, or
f (e) ≠ f (e′), in which case f (e) ♯1 f (e′), and therefore e ♯0 e′.

3. If X2 ↦2 g(f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 ↦1 f (e),
X0 ↦0 e, g(X1) ⊆ X2, f (X0) ⊆ X1, if e1 ∈ X1 then g(e1) ≠ ⊥, and if e0 ∈ X0
then f (e0) ≠ ⊥. This means that g(f (X0)) ⊆ X2, and if e0 ∈ X0 then g(f (e0)) ≠ ⊥.

We also define a product in this category in Definition A.6.

Definition A.6 (Product of BESs). Let 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1) be
bundle event structures. Their product 0 × 1 is the BES = (E,↦, ♯) defined by:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. projections �0, �1 are defined so that for (e0, e1) ∈ E, �i((e0, e1) = ei.
3. for any e ∈ E, X ⊆ E, X ↦ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};

4. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′).

Proposition A.7. Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1), 0 × 1 =
(E,↦, ♯) is a product.

Proof. We first show that �0 and �1 are morphisms:

1. If �i(e) ♯i �i(e′), then obviously e ♯ e′.
2. If �i(e) = �i(e′) and e ≠ e′, then �1−i(e) ≠ �1−i(e′), and therefore e ♯ e′.
3. If Xi ↦ �i(e), then {e′ ∈ E ∣ �i(e′) ∈ Xi} ↦ e. Clearly �i({e′ ∈ E ∣ �i(e′) ∈
Xi}) = Xi, and for all e′ ∈ {e′ ∈ E ∣ �i(e′) ∈ Xi}), �i(e′) ≠ ⊥.

4. IfX is a configuration of 0×1, then we show that �i(X) satisfies the requirements
of a configuration of i:
(a) As shown above �i(e) ♯i �i(e′)⇒ e ♯ e′, meaningX conflict free implies �i(X)

conflict-free.
(b) If there exists a sequence e1,… , en such thatX = {e1,… , en} and for all j, 1 ≤

j ≤ n, if Y ↦ ej+1 then {e1,… , ej}∩Y ≠ ∅, then �i(X) = {�i(e1),… , �i(en)}
and if �i(ej+1) ≠ ⊥, then whenever Yi ↦ �i(ej+1), {e′ ∈ E ∣ �i(e′) ∈ Yi} ↦
ej+1, meaning {e′ ∈ E ∣ �i(e′) ∈ Yi} ∩ {e1,… , ej} ≠ ∅. Therefore, we must
get Yi ∩ {�i(e1),… , �i(ej)} ≠ �i(∅) = ∅.

We then show that for any BES, 2 = (E2,↦2, ♯2), if there exist morphisms f0 ∶
2 → 0 and f1 ∶ 2 → 1, then there exists a unique morphism f ∶ 2 → , such that
f2◦�0 = f0 and f2◦�1 = f1. Since BES-morphisms are functions, they are all unique.

We define f by f (e) = (f0(e), f1(e)), meaning the morphisms clearly commute as
described above, and prove it to be a morphism:

1. If f (e) ♯ f (e′) then there exists i ∈ {0, 1} such that either �i(f (e)) ♯i �i(f (e′)), in
which case clearly fi(e) ♯i fi(e′)i, and therefore e ♯2 e′, or �i(f (e))) = �i(f (e′)) ≠
⊥ and �1−i(f (e)) ≠ �1−i(f (e′)), in which case fi(e) = fi(e′) ≠ ⊥, and e ≠ e′,
meaning e ♯2 e′.

21

2. If f (e) = f (e′) ≠ ⊥ then f0(e) = f0(e′) ≠ ⊥ or f1(e) = f1(e′) ≠ ⊥, meaning if
e ≠ e′ then e ♯2 e′.

3. For X ⊆ E, if X ↦ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi}. And since Xi ↦ fi(e), there exists
X2 ⊆ E2 such that X2 ↦2 e, fi(X2) ⊆ Xi, and if e′ ∈ X2 then fi(e′) ≠ ⊥. Clearly
f (X2) ⊆ X.

4. If X is a configuration of 2, then we show that f (X) satisfies the requirements of
a configuration of 0 × 1:
(a) As shown above, if f (e) ♯ f (e′), then e ♯2 e′, meaning if X is conflict-free,

then f (X) is conflict-free.
(b) If there exists a sequence e1,… , en such thatX = {e1,… , en} and for all j, 1 ≤

j ≤ n, if Y ↦ ej+1 then {e1,… , ej} ∩ Y ≠ ∅, then f (X) = {f (e1),… , f (en)}
and if f (ej+1) ≠ ⊥, then whenever Y ′ ↦ f (ej+1), {e′ ∈ E ∣ f (e′) ∈ Y ′} ↦
ej+1, meaning {e′ ∈ E ∣ f (e′) ∈ Y ′} ∩ {e1,… , ej} ≠ ∅. Therefore, we must
get Y ′ ∩ {f (e1),… , f (ej)} ≠ f (∅) = ∅.

Definition A.8 (BES coproduct). Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1
), their coproduct 0 + 1 = (E,↦, ♯) where:

– E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
– injections i0, i1 are defined so that for e ∈ Ej , ij(e) = (j, e) for j ∈ {0, 1};
– X ↦ (j, e) iff for all (j′, e′) ∈ X, j = j′ and ij(X)↦j e;
– (j, e) ♯ (j′, e′) iff j ≠ j′ or e ♯j e′.

Proposition A.9. If 0 and 1 are BESs, then 0 + 1 is their coproduct.

Proof. Obviously is a BES, and i0 and i1 are morphisms, so we simply need to prove
that if there exists a BES 2 = (E2,↦2, ♯2) and morphisms f0 ∶ 0 → 2 and f1 ∶
1 → 2, then there exists a unique BES-morphism f ∶ → 2 such that the following
commutes:

0 1

2

i0 i1

f

f0 f1

Since E0 + E1, i0, and i1 make up a coproduct in the category of sets and partial
functions, f must be unique.

We define f as f ((j, e)) = fj(e) and prove it to be a morphism:

– If f (e)#2f (e′) then e = (j, ej), e′ = (j′, ej′) fj(ej) = f (e), fj′ (ej′) = f (e′),
and either j ≠ j′ or j = j′. If j ≠ j′, then obviously e ♯ e′. If j = j′, then
fj(ej) ♯2 fj(ej′), meaning ej ♯j ej′ , and therefore e ♯ e′.

– If f (e) = f (e′) ≠ ⊥ then e = (j, ej) and e′ = (j′, ej′) and fj(ej) = f (e) = f (e′) =
fj′ (ej′).
If j = j′ then e ≠ e′ means that ej ≠ ej′ , which means that ej#jej′ and therefore
e#e′.
If j ≠ j′, then by definition e#e′.

22

– If X2 ↦ f (e), then e = (j, ej), and there exists Xj such that Xj ↦j ej , fj(Xj) ⊆
X2, and if e′j ∈ Xj then fj(e′j) ≠ ⊥. This means {(j, e′j) ∣ e

′
j ∈ Xj}↦ e, f ({(j, e′j) ∣

e′j ∈ Xj}) ⊆ X2, and if e′ ∈ {(j, e′j) ∣ e
′
j ∈ Xj} then e′ ≠ ⊥.

The diagram obviously commutes.

A.2 Product and Coproduct

Proposition A.10. Given RBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 = (E1, F1,↦1, ♯1
,⊳1), 0 × 1 is a product.

Proof. Similar to proof of Proposition A.7.

Proposition A.11. If 0 and 1 are RBESs, then 0 + 1 is their coproduct.

Proof. Similar to proof of Proposition A.9.

A.3 Proposition A.12

Proposition A.12. RBES consisting of RBESs and RBES-morphisms is a category.

Proof. Partial functions are associative, and f (e) = e functions as a an identity arrow,
and the morphisms are obviously composable.

A.4 Proof of Proposition 3.8

Proof. 1. There exists a trace ∅
{e∗0}
←←←←←←←←←←←←←←←←←→ C0

{e∗1}
←←←←←←←←←←←←←←←←←→ C1…

{e∗n}
←←←←←←←←←←←←←←←←←→ Cn where Cn = C . Clearly

e∗0 = e0, and C0 is forwards-reachable, and we will show that if Cj is forwards-
reachable for 0 ≤ j ≤ i, then Ci+1 is forwards-reachable.
If e∗i+1 = ei+1, then obviously Ci+1 is forwards-reachable.
If e∗i+1 = ei, then Ci+1 = Ci−1, which is obviously forwards-reachable.
If e∗i+1 = ej for some 0 ≤ j < i, then for all 0 ≤ j′ ≤ i, since ej′̸⊳ej , there does not

existX ⊆ E such that ej ∈ X andX ↦ ej′ . This means obviously ∅
{e∗0}
←←←←←←←←←←←←←←←←←→ C0

{e∗1}
←←←←←←←←←←←←←←←←←→

C1…
{e∗j−1}
←←←←←←←←←←←←←←←←←←←←←←←←→ Cj−1

{e∗j+1}
←←←←←←←←←←←←←←←←←←←←←←←←→ Cj+1 ⧵ {ej}…

{e∗i }
←←←←←←←←←←←←←←←←←→ Ci+1.

2. For any forwards-reachable configuration X ∈ C and A,B ⊆ F , if X
A∪B
←←←←←←←←←←←←←←←←←←←→ (X ∪

A) ⧵ B then (X ∪ A) ⧵ B
B∪A
←←←←←←←←←←←←←←←←←←←→ X according to Definition 3.5:

(a) obvious
(b) For all e ∈ A and e′ ∈ E, if e′ ⊳ e, then either e′ ♯ e, or there exists X′ ⊆ E

such that X′ ↦ e′ and e ∈ X′.
If e′ ♯ e, then, as X ∪ A is conflict-free, e′ ∉ X ∪ A.
If there exists X′ ⊆ E such that X′ ↦ e′ and e ∈ X′ then for all e′′inX′ ⧵ {e}
we know e′′ ♯ e, meaning e′′ ∉ X ∪ A. This means X ∩X′ = ∅, and therefore

for all X′′ ⊆ X, X′′ ̸
e′
←←←←←←←←→, and consequently e′ ∉ X ∪ A.

23

(c) For all e ∈ B and X′ ⊆ E, if X′ ↦ e, then, since X is forwards-reachable,
X′ ∩X ≠ ∅. If X′ ∩X ⧵ B = ∅, then there exists e′ ∈ X′ ∩ B. But this means

e ⊳ e′, conflicting with X
A∪B
←←←←←←←←←←←←←←←←←←←→.

(d) For all e ∈ A and X′ ⊆ E, if X′ ↦ e, then e ∈ X′.

B Section 4

B.1 Proposition B.1

Proposition B.1. If 0 and 1 are LRBESs, then 0&1 = with injections i0 and i1
such that ij(j, e) = e is their coproduct.

Proof. Obviously is an LRBES, and i0 and i1 are morphisms, so we simply need to
prove that if there exists an LRBES 2 = (E2, F2,↦2, ♯2,⊳2, �2,Act2) and morphisms
f0 ∶ 0 → 2 and f1 ∶ 1 → 2, then there exists a unique LRBES-morphism f ∶
 → 2 such that the following commutes:

0 1

2

i0 i1

f

f0 f1

Since E0 + E1, i0, and i1 make up a coproduct in the category of sets and partial
functions, f must be unique.

We define f as f ((j, e)) = fj(e) and prove it to be a morphism. Since (E, F,↦
, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) + (E1, F1,↦1, ♯1,⊳1), we know f ∶ (E, F,↦, ♯,⊳) →
(E2, F2,↦2, ♯2,⊳2) is an RBES-morphism, and by definition �((e, j)) = �j(e) = �2(fj(e)).

The diagram obviously commutes.

B.2 ≤ is a Complete Partial Order

≤ is clearly a partial order with the empty LRBES as its minimum.

Proposition B.2. Any !-chain 0 ≤ 1 ≤ 2… has a least upper bound = (E, F,↦
, ♯,⊳, �,Act) where:

1. E =
⋃

n∈!
En;

2. F =
⋃

n∈!
Fn;

3. X ↦ e∗ if for all n ∈ ! such that e ∈ En, (X ∩ En)↦ e∗;
4. ♯=

⋃

n∈!
♯n;

5. ⊳ =
⋃

n∈!
⊳n;

6. �(e) = l if there exists n ∈ ! such that �n(e) = l;
7. Act =

⋃

n∈!
Actn;

24

This means that, given a set of events A, with EA being the set of LRBESs (E, F,↦
, ♯,⊳, �,Act) such thatE ⊆ A, (EA,≤) is a complete partial order. We then need to show
that our operations are monotonic.

Proof. Clearly is an LRBES, and for all i ∈ !, i ≤ :
We therefore know that is an upper bound of the chain. We now show that is

the least upper bound of the chain: Given an upper bound ′, it is obvious that E ⊆ E′,
F = E ∩ F ′, and if X ↦ e∗ then, for all n ∈ !, if e ∈ En then X ∩ En ↦n e∗,
meaning since n ≤ ′ there exists X′

n ⊆ E′ such that X′
n ↦ e∗ and X′

n ∩ En = Xn,
and since for all n′ ≥ n, n′ ≤ ′ and e ∈ En′ , X′

n ∩ En′ ↦n′ e∗. This means clearly
X′
n∩E =

⋃

n∈!
Xn = X. And for e ∈ E, ifX′ ↦′ e′∗, then for all n ∈ ! such that e ∈ En

X′ ∩ En ↦n e∗, meaning X′ ∩ E ↦ e∗. Similar arguments apply to ♯, ⊳, �, and Act.
This means, clearly ≤ ′, and is the least upper bound of the chain.

B.3 Proof of Proposition 4.7

Proof. It should be obvious that all the operations used for defining the and ′ are
monotonic, so clearly ′ ≤ , and since P has been generated from a standard process,
we cannot have any �[m] inside a recursion, as it would have to have been unfolded first.

B.4 Proof of Proposition 4.8

Proof. We prove this by induction in P :

– Suppose P = 0. Then is empty, and therefore obviously causal.
– Suppose P = P0+P1, e ∈ E and e′ ∈ F . Then if e⊳ e′, then there exists i ∈ {0, 1}
such that either e ⊳i e′ or e ∈ Ei and e′ ∈ F1−i. By induction, e ⊳i e′ means there
exists an Xi ⊆ Ei such that Xi ↦i e and e′ ∈ Xi. As Xi ↦i e, we get Xi ↦ e. And
Ei × E1−i ⊆♯.
If there exists anX ⊆ E such thatX ↦ e and e′ ∈ X, then there exists an i ∈ {0, 1}
such that X ↦i e. That by induction we get e ⊳i e′, implying e ⊳ e′.
X ↦ e′ if and only if there exists an i ∈ {0, 1} such that X ↦i e′. By induction,
this means e′ ∈ X.

– Suppose P = �.P ′, e ∈ E and e′ ∈ F . Then if e⊳ e′, then either e⊳′ e′, or e′ = e�
and e ∈ E′. If e ⊳′ e′, then by induction there exists an X ⊆ E′ such that X ↦′ e
and e′ ∈ X, and X ↦ e. If e′ = e� and e ∈ E′ then we know {e�}↦ e.
If there exists an X ⊆ E such that X ↦ e and e′ ∈ X, then either X ↦′ e, or
X = {e�} and e ∈ E′. If X ↦′ e, then by induction we get e ⊳′ e′, and therefore
e ⊳ e′. If X = {e�} and e ∈ E′, then we know e ⊳ e� .
X ↦ e′ if and only if X ↦′ e′ or e′ = e� and X = {e�}. By induction, if X ↦′ e′
then e′ ∈ X.

– Suppose P = �[m].P ′. Then the proof is similar to the previous case.
– Suppose P = P0 ∣ P1, e ∈ E and e′ ∈ F . Then if e ⊳ e′, then there exists an
i ∈ {0, 1}, such that �i(e)⊳i�i(e′). By induction, this means there exists anXi ⊆ Ei
such that Xi ↦i �i(e) and �i(e′) ∈ Xi. This means {e′′ ∈ E ∣ �i(e′′) ∈ Xi} ↦ e,
and obviously e′ ∈ {e′′ ∈ E ∣ �i(e′′) ∈ Xi}.

25

If there exists anX ⊆ E such thatX ↦ e and e′ ∈ X, then there exists an i ∈ {0, 1}
and Xi ⊆ Ei such that Xi ↦i �i(e) and X = {e′′ ∈ E ∣ �i(e′′) ∈ Xi}, meaning
�i(e′) ∈ Xi. By induction we get �i(e) ⊳i �i(e′), and therefore e ⊳ e′.
X ↦ e′ if and only if there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi ↦i �i(e′)
and X = {e′′ ∈ E ∣ �i(e′′) ∈ Xi}. By induction, since Xi ↦i �i(e′) we know
�i(e′) ∈ Xi, meaning clearly e′ ∈ X.

– Suppose P = P ′ ⧵ A, e ∈ E and e′ ∈ F . Then X ↦ e′∗ if and only if X ↦′ e′∗
and e ⊳ e′ if and only if e ⊳′ e′. The proof is trivial induction.

– Suppose P = P ′[f]. Then the proof is trivial induction.

B.5 Proof of Proposition 4.9

Proof. We say that = (E, F,↦, ♯,⊳, �,Act) and ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′)
and do a case analysis on the Structural congruence rules:

P = X ∣ Y and P ′ = Y ∣ X: Products are unique up to isomorphism and

f (e) =

⎧

⎪

⎨

⎪

⎩

(eY , eX) if e = (eX , eY)
(eY , ∗) if e = (∗, eY)
(∗, eX) if e = (eX , ∗)

clearly fulfils the conditions other conditions.

P = X ∣ (Y ∣ Z) and P ′ = (X ∣ Y) ∣ Z: Products are associative up to isomorphism,
and f ((eX , (eY , eZ)) = ((eX , eY), eZ) clearly fulfills the other conditions.

P = P ′ ∣ 0: If f ((e, ∗)) = e, then this clearly holds.
P = X + Y and P ′ = Y +X: Coproducts are unique up to isomorphism, and f (e) = e

clearly fulfil the other conditions.
P = (X + Y) +Z and P ′ = (X + Y) +Z: Coproducts are associative up to isomor-

phism, and f (e) = e clearly fulfils the other conditions.
P = P ′ + 0: Clearly P = (E′ ∪ ∅, F ′ ∪ ∅,↦′ ∪ ∅, ♯′ ∪ ∅,⊳′ ∪ ∅, �′,Act′ ∪ ∅), Init =

Init′, and k = k′.
P = A

⟨

b̃
⟩

and P ′ = PA{b̃∕ã} where A ⟨ã⟩ = PA: Obvious

B.6 Lemma B.3

Lemma B.3 (standard).Given a reachable process P such that ⦃P⦄ = ⟨ , Init, k⟩, we
have std(P) if and only if Init = ∅.

Proof. As the only rule which can add events to an empty Init is ⦃�[m].P⦄, clearly
Init = ∅ if std(P).

If I = ∅, then clearly we cannot have any �[m] in P , which are not guarded by a
restriction on �. But if such a restricted communication has occurred in P , then there
must exist a parallel a[m] inside the same restriction, meaning the corresponding event
(e� , e�) has the label �, not �, and would therefore be in Init. Therefore we must have
std(P).

26

B.7 Lemma B.4

Lemma B.4 (Reachable). Given a reachable process P , and ⦃P⦄ = ⟨ , Init, k⟩, then
Init is conflict-free in .

Proof. We show this by structural induction in P , which we can do because of Propo-
sition 5.5 of [19], the proof of which is not affected by adding definitions.

– Suppose P = 0. Then Init = ∅.
– Suppose P = �.P ′. Then Init = Init′, and therefore Init is conflict-free.
– Suppose P = �[m].P ′. Then Init = Init′ ∪ {e�}, Init′ is conflict-free, and therefore
Init is clearly conflict-free.

– Suppose P = P1 + P2. Then Init = Init1 ∪ Init2 and, since P is reachable from a
standard process, either Init1 = ∅ or Init2 = ∅, and both Init1 and Init2 are conflict-
free. Therefore, Init is conflict-free.

– Suppose P = P1 ∣ P2. Then, since P is reachable from a standard process, each key
appears at most once in P1 and once in P2. Additionally, Init1 is conflict-free and
Init2 is conflict-free, meaning Init = {(e0, ∗) ∣ e0 ∈ Init0 and ∄e1 ∈ Init1.�0(e0) =
�1(e1) and k0(e0) = k1(e1)} ∪ {(∗, e1) ∣ e1 ∈ Init1 and ∄e0 ∈ Init0.�0(e0) =
�1(e1) and k0(e0) = k1(e1)} ∪ {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)} is
conflict-free.

– Suppose P = P ′ ⧵ A. Then Init′ is conflict-free, and Init ⊆ Init′, meaning Init is
conflict-free.

– Suppose P = P ′[f]. then Init = Init′, which is conflict-free.

B.8 Proof of Theorem 4.10

Proof. We first prove that if there exists a P ′ and a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ then there

exists a transition Init
{e}
←←←←←←←←←←←←←→ X and an isomorphism f ∶ → ′ such that �(e) = �,

f◦k′ = k[e ↦ m], and f (X) = Init′. We prove this by inductions on the transition
rules:

– Suppose P = �.Q, P ′ = �[m].Q, � = �, and std(Q). Then there exist. Q and e�
such that:
e� ∉ EQ,
⦃Q⦄ =

⟨

Q, Init, k
⟩

,
E = EQ ∪ {e�},
F = FQ ∪ {e�},
X ↦ e∗ if X ↦Q e∗ or X = {e�} and e∗ = e ∈ EQ,
♯=♯Q,
⊳ = ⊳Q ∪ (EQ × {e�}),
Act = ActQ ∪ {�},

for all e ∈ E, �(e) =
{

�Q(e) if e ∈ EQ
� if e = e�

,

and if Init ≠ ∅ then for all e ∈ E, {e} ↦ e and for all e ∈ F , e ⊳ e.

27

There also exists ′Q and e′� such that: e′� ∉ E
′
Q

⦃Q⦄ =
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

,
E′ = E′Q ∪ {e

′
�},

F ′ = F ′Q ∪ {e
′
�},

X ↦′ e∗ if X ↦′
Q e

∗ or X = {e′�} and e
∗ = e ∈ E′Q,

♯′=♯′Q,
⊳′ = ⊳′Q ∪ (E

′
Q × {e

′
�}),

Act′ = Act′Q ∪ {�},

for all e ∈ E′, �′(e) =

{

�′Q(e) if e ∈ E′Q
� if e = e′�

,

Init′ = Init′Q ∪ {e
′
�},

and k′(e) =

{

k′Q(e) If e ∈ Init′Q

m If e = e′�
.

As Q and ′Q have been generated by the same process, we have an isomorphism
fQ ∶ Q → ′Q. We say that f = fQ[e� ↦ e′�], which is obviously an isomorphism.
Since Init is conflict-free and ♯=♯Q, X = Init ∪ {e�} is conflict free, and therefore
a configuration of Cbr(). And since no X′ ⊆ E exists such that X′ ↦ e� , we get

Init
{e�}
←←←←←←←←←←←←←←←←←→ {e�}, and clearly �(e�) = � and k(f (e)) = m.

– Suppose that P = �[n].Q, P ′ = �[n].Q′, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and m ≠ n. Then there exist

Q and e� such that:
e� ∉ EQ,
⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

,
E = EQ ∪ {e�},
F = FQ ∪ {e�},
X ↦ e∗ if X ↦Q e∗ or X = {e�} and e∗ = e ∈ EQ,
♯=♯Q,
⊳ = ⊳Q ∪ (EQ × {e�}),
Act = ActQ ∪ {�},

for all e ∈ E, �(e) =
{

�Q(e) if e ∈ EQ
� if e = e�

,

Init = InitQ ∪ {e�},

and k(e) =
{

kQ(e) If e ∈ InitQ
m If e = e�

.

And there exist Q′ and e′� such that:
e′� ∉ EQ′ ,
⦃Q′⦄ =

⟨

Q′ , InitQ′ , kQ′
⟩

,
E′ = EQ′ ∪ {e′�},
F ′ = FQ′ ∪ {e′�},
X ↦′ e∗ if X ↦Q′ e∗ or X = {e′�} and e

∗ = e ∈ EQ′ ,
♯′=♯Q′ ,

28

⊳′ = ⊳Q′ ∪ (EQ′ × {e′�}),
Act′ = ActQ′ ∪ {�},

for all e ∈ E′, �′(e) =
{

�Q′ (e) if e ∈ EQ′
� if e = e′�

,

Init′ = InitQ′ ∪ {e′�},

and k′(e) =
{

kQ′ (e) If e ∈ InitQ′

m If e = e′�
.

By induction, we get an isomorphism fQ ∶ Q → Q′ and a transition InitQ
{e}
←←←←←←←←←←←←←→

XQ in Cbr(Q) such that �Q(e) = �, kQ′ (fQ(e)) = m, and fQ(XQ) = InitQ′ .
We define f = fQ[e� ↦ e′�]. Since InitQ and XQ are conflict-free in Q, InitQ ∪

{e�} = Init and XQ ∪ {e�} = X are configurations of Crb(), and clearly Init
{e}
←←←←←←←←←←←←←→

X.
– Suppose P = Q ∣ R, P ′ = Q′ ∣ R, Q

�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and fsh[m](R). Then there exist Q

and R such that
⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

,
⦃R⦄ = ⟨R, InitR, kR⟩,
P = Q||R,
Init = {(eQ, ∗) ∣ eQ ∈ InitQ and ∄eR ∈ InitR.�Q(eQ) = �R(eR) and kQ(eQ) =
kR(eR)} ∪ {(∗, eR) ∣ eR ∈ InitR and ∄eQ ∈ InitQ.�Q(eQ) = �R(eR) and kQ(eQ) =
kR(eR)} ∪ {(eQ, eR) ∣ eQ ∈ InitQ, eR ∈ InitR, kQ(eQ) = kR(eR)},

and k(e) =
⎧

⎪

⎨

⎪

⎩

kQ(eQ) If e = (eQ, ∗)
kR(eR) If e = (∗, eR)
kQ(eQ) If e = (eQ, eR)

.

We also have
⟨

 ′, Init′, k′
⟩

similarly made up of some
⟨

Q′ , InitQ′ , kQ′
⟩

and
⟨

 ′R,
Init′R, k

′
R
⟩

such that ⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩

and ⦃R⦄ =
⟨

 ′R, Init
′
R, k

′
R
⟩

.
We clearly have isomorphisms fQ ∶ Q → Q′ and fR ∶ R → ′R and a transition

InitQ
{eQ}
←←←←←←←←←←←←←←←←←←←→ XQ of Crb(Q) such that �Q(e) = �, kQ′ (fQ(eQ)) = m, and fQ(XQ) =

InitQ′ .
Since Init is conflict-free andXQ is conflict-free in Q, clearly Init∪{(eQ, ∗)} = X

is conflict-free, and Init
(eQ,∗)
←←←←←←←←←←←←←←←←←←←←←←←→ X.

We define our isomorphism as f (e) =
⎧

⎪

⎨

⎪

⎩

(fQ(e′), ∗) if e = (e′, ∗)
(∗, fR(e′)) if e = (∗, e′)
(fQ(e′), fR(e′′)) if e = (e′, e′′)

. And,

since fsh[m](R), f (X) = Init′. And the rest of the proof is straightforward.

– Suppose P = Q ∣ R, P ′ = Q′ ∣ R′, Q
�[m]
←←←←←←←←←←←←←←←←←→ Q′, R

�[m]
←←←←←←←←←←←←←←←←←→ R′, and � = �. Then there

exist Q and R such that
⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

,
⦃R⦄ = ⟨R, InitR, kR⟩,
P = Q||R,

29

Init = {(eQ, ∗) ∣ eQ ∈ InitQ and ∄eR ∈ InitR.�Q(eQ) = �R(eR) and kQ(eQ) =
kR(eR)} ∪ {(∗, eR) ∣ eR ∈ InitR and ∄eQ ∈ InitQ.�Q(eQ) = �R(eR) and kQ(eQ) =
kR(eR)} ∪ {(eQ, eR) ∣ eQ ∈ InitQ, eR ∈ InitR, kQ(eQ) = kR(eR)},

and k(e) =
⎧

⎪

⎨

⎪

⎩

kQ(eQ) If e = (eQ, ∗)
kR(eR) If e = (∗, eR)
kQ(eQ) If e = (eQ, eR)

.

We also have
⟨

 ′, Init′, k′
⟩

similarly made up of some
⟨

Q′ , InitQ′ , kQ′
⟩

and
⟨

R′ ,
InitR′ , kR′

⟩

such that ⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩

and ⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩.
By induction, we have isomorphisms fQ ∶ Q → Q′ and fR ∶ R → R′ and

transitions InitQ
{eQ}
←←←←←←←←←←←←←←←←←←←→ XQ of Crb(Q) such that �Q(e) = �, kQ′ (fQ(eQ)) = m,

and fQ(XQ) = InitQ′ , and InitR
{eR}
←←←←←←←←←←←←←←←←←←→ XR of Crb(R) such that �R(e) = �,

kR′ (fR(eR)) = m, and fR(XR) = InitR′ .

We define our isomorphism as f (e) =
⎧

⎪

⎨

⎪

⎩

(fQ(e′), ∗) if e = (e′, ∗)
(∗, fR(e′)) if e = (∗, e′)
(fQ(e′), fR(e′′)) if e = (e′, e′′)

.

We know that Init, XQ, and XR are conflict-free, so the only way Init ∪ {(eQ, eR)}
has conflict is if InitQ or InitR contains an event with the key m, which we know
from Lemma 5.2 of [19], whcih is not affected by definitions, as they cannot define
processes with past actions, is not possible. The rest of the proof is straightforward.

– Suppose P = Q + R, P ′ = Q′ + R, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and std(R). Then there exist Q

and R such that:
⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

,
⦃R⦄ = ⟨R, InitR, kR⟩,
E = EQ ∪ ER,
F = FQ ∪ FR,
X ↦ e∗ if there exists i ∈ {Q,R} such that X ↦i e∗,
♯=♯Q ∪ ♯R ∪(EQ × ER) ∪ (ER × EQ),
⊳ = ⊳Q ∪ ⊳R ∪ (EQ × FR) ∪ (ER × FQ),
Act = ActQ ∪ ActR,
for all e ∈ E, i ∈ {Q,R}, �(e) = �i(e) if e ∈ Ei,
Init = InitQ ∪ InitR,
for i ∈ {Q,R}, k(e) = ki(e) if e ∈ Initi,
If InitQ ≠ ∅ and InitQ ≠ ∅ then for all e ∈ E, {e}↦ e and for all e ∈ F , e ⊳ e.
We also have

⟨

 ′, Init′, k′
⟩

similarlymade up of some
⟨

Q′ , InitQ′ , kQ′
⟩

and
⟨

 ′R, Init
′
R, k

′
R
⟩

such that ⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩

and ⦃R⦄ =
⟨

 ′R, Init
′
R, k

′
R
⟩

.
We clearly have isomorphisms fQ ∶ Q → Q′ and fR ∶ R → ′R and a transition

InitQ
{e}
←←←←←←←←←←←←←→ X of Crb(Q) such that �Q(e) = �, kQ′ (fQ(e)) = m, and f (X) = InitQ′ .

We define our isomorphism f (e) =
{

fQ(e) if e ∈ EQ
fR(e) if e ∈ ER

.

Since std(R), InitR = ∅, and therefore Init = InitQ, which is conflict-free end there-

fore a configuration. Obviously Init
{e}
←←←←←←←←←←←←←→ X in Crb(), and the rest follows.

30

– Suppose P = Q ⧵ A, P ′ = Q′ ⧵ A, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and � ∉ A ∪ A. Then there exists

Q such that:
⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

 = Q ↾ {e ∣ �Q(e) ∉ A ∪ A}
Init = InitQ ∩ {e ∣ �Q(e) ∉ A ∪ A}
k = kQ ↾ {e ∣ �Q(e) ∉ A ∪ A}
And there exists Q′ such that:
⦃Q′⦄ =

⟨

Q′ , InitQ′ , kQ′
⟩

 ′ = Q′ ↾ {e ∣ �Q′ (e) ∉ A ∪ A}
Init′ = InitQ′ ∩ {e ∣ �Q′ (e) ∉ A ∪ A}
k′ = kQ′ ↾ {e ∣ �Q′ (e) ∉ A ∪ A}

By inductions we have an isomorphism fQ ∶ Q → Q′ and a transition InitQ
{eQ}
←←←←←←←←←←←←←←←←←←←→

XQ or Crb(Q) such that �Q(e) = �, kQ′ (fQ(eQ)) = m, and fQ(XQ) = InitQ′ . We
define our isomorphism as fQ ↾ {e ∣ �Q′ (e) ∉ A ∪ A}. And since �(e) ∉ A ∪ A,
the rest of the proof is straightforward.

– Suppose P = Q[f ′], P ′ = Q′[f ′], Q
�[m]
←←←←←←←←←←←←←←←←←→ Q′, and f ′(�) = �. Then there exist �Q

and ActQ such that
⦃Q⦄ =

⟨

(E, F ,↦, ♯,⊳, �Q,ActQ), Init, k
⟩

,
Act = f ′(ActQ)
and � = f ′◦�Q.
And there exist �Q′ and ActQ′ such that
⦃Q′⦄ =

⟨

(E′, F ′,↦′, ♯′,⊳′, �Q′ ,ActQ′), Init′, k′
⟩

,
Act′ = f ′(ActQ′)
and � = f ′◦�Q′ .

By induction, we get an isomorphism fQ ∶ Q → Q′ and a transition Init
{e}
←←←←←←←←←←←←←→ X

in Crb(Q) such that �Q(e) = �, k′(f ′(e)) = m, and f (X) = Init′. We define our
isomorphisms f = fQ, and the rest of the proof is straightforward.

– Suppose P ≡ Q, P ′ ≡ Q′, and Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then the result follows from induction

and Proposition 4.9.

We then prove that if there exists a transition Init
{e}
←←←←←←←←←←←←←→ X then there exist a P ′ and

a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ and an isomorphism f ∶ → ′ and such that �(e) = �,

f◦k′ = k[e↦ m], and f (X) = Init′.

– Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr().
– Suppose P = �.Q. Then {e�} ↦ e′ for all e′ ∈ E ⧵ {e�}, meaning by definition
e = e� . In addition, since P is reachable, clearly std(P) meaning Init = ∅. This

means we get P
�[m]
←←←←←←←←←←←←←←←←←→ �[m].Q for some fresh m, and the isomorphisms are similar

to this case in the first part of the proof.
– Suppose P = �[n].Q and ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

. Then e� ∈ Init, and clearly

InitQ
e
←←←←←→Q XQ, meaning there exists a key m and a transition Q

�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ Q′, such

31

that ⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩

and there exists an isomorphism fQ ∶ Q → Q′

such that kQ′ (fQ(e)) = m and fQ(XQ) = InitQ′ . If m ≠ n, then P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ �[m].Q′.

Otherwise, we can chose a fresh m and still get a transition. We define our isomor-
phism as f = fQ[e� ↦ e′�] and the rest of the proof is straightforward.

– Suppose P = P0 + P1, ⦃P0⦄ = ⟨0, Init0, k0⟩, Cbr(0) = (E0, F0,C0,→0), ⦃P1⦄ =
⟨1, Init1, k1⟩, andCbr(1) = (E1, F1,C1,→1). Then either Init0

e
←←←←←→0 X0 and Init1 =

∅, or Init1
e
←←←←←→1 X1 and Init0 = ∅.

If Init0
e
←←←←←→0 X0, then there exists a key m and a transition P0

�0(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , such

that
⦃

P ′0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and there exists an isomorphism f0 ∶ 0 → ′0 such
that k′0(f0(e)) = m and f0(X0) = Init′0. Then, since Init1 = ∅ means std(P1),

P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 + P1, and the isomorphisms are similar to this case in the first part of

the proof.
If Init1

e
←←←←←→1 X1, then the proof is similar.

– Suppose P = P0 ∣ P1, ⦃P0⦄ = ⟨0, Init0, k0⟩, Cbr(0) = (E0, F0,C0,→0), ⦃P1⦄ =
⟨1, Init1, k1⟩, and Cbr(1) = (E1, F1,C1,→1). Then either e = (e0, ∗), e = (∗, e1),
or e = (e0, e1).
If e = (e0, ∗), then whenever X′

0 ↦0 e0, we get {e′ ∈ E ∣ �0(e′) ∈ X′
0} ↦ e. And

whenever �0(e′) ♯0 �0(e), we get e′ ♯ e. This means Init0 is conflict-free, �0(X) is
conflict-free, and Init0

e0
←←←←←←←←←→0 �0(X). There therefore exists a key m and a transition

P0
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , such that

⦃

P ′0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and there exists an isomorphism
f0 ∶ 0 → ′0 such that k

′
0(f0(e0)) = m and f0(�0(X)) = Init′0.

We chose an m, which is fresh for P1, and we get P
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P1. We define

our isomorphism

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)
(e′ if e′ = (∗, e′1)
(f0(e′0), e

′
1) if e′ = (e′0, e

′
1)
. Since ′ = ′0 × 1, f is an isomorphism,

and the rest of the case is straightforward.
If e = (e0, ∗), the argument is similar.
If e = (e0, e1), then for i ∈ {0, 1}, whenever X′

i ↦i ei, we get {e′ ∈ E ∣ �i(e′) ∈
X′
i} ↦ e. And whenever �i(e′) ♯i �i(e), we get e′ ♯ e. This means Initi is conflict-

free, �i(X) is conflict-free, and Initi
e0
←←←←←←←←←→i �i(X). There therefore exists a key mi and

a transition Pi
�i(ei)[mi]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′i , such that

⦃

P ′i
⦄

=
⟨

 ′i , Init
′
i, k

′
i
⟩

and there exists an
isomorphism fi ∶ i → ′i such that k′i(fi(ei)) = mi and fi(�i(X)) = Init′i.
We say that m0 = m1 is a fresh m, and then since �0(e0) = �1(e1) and �(e) = �, we

get P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P

′
1 . We define our isomorphism

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)
((∗, f1(e′1)) if e′ = (∗, e′1)
(f0(e′0), f1(e

′
1)) if e′ = (e′0, e

′
1)
. Since ′ = ′0 × ′1, f is an isomor-

phism, and the rest of the case is straightforward.

32

– Suppose P = Q ⧵ A, ⦃Q⦄ =
⟨

Q, Init, k
⟩

, and Cbr(Q) = (EQ, FQ,CQ,→Q).
Then �(e) ∉ A ∪ A and Init

e
←←←←←→Q X, meaning there exists a key n and a transition

Q
�Q(e)
←←←←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′⦄ =

⟨

Q′ , InitQ′ , kQ′
⟩

, and there exists an isomorphism
fQ ∶ Q → Q′ such that fQ◦kQ′ = [e ↦ n] and fQ(X) = InitQ′ .

This means P
�Q(e)
←←←←←←←←←←←←←←←←←←←←←→ Q′⧵A and the morphisms f ↾ E and g ↾ {e′ ∈ E′Q ∣ �

′
Q(e

′) ∉
A ∪ A} clearly fulfil the remaining conditions.

– Suppose P = Q[f], ⦃Q⦄ =
⟨

Q, Init, k
⟩

, and Cbr(Q) = (EQ, FQ,CQ,→Q).
Clearly Init

e
←←←←←→Q X, and f (�Q(e)) = �(e), and the proof is straightforward.

B.9 Reverse operational correspondence

Theorem B.5. Let P and P ′ be processes, � be an action, and m be a key such that
⦃P⦄ = ⟨ , Init, k⟩, = (E, F,↦, ♯,⊳, �,Act), Init is conflict-free,Cbr() = (E, F,C,→

), and ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

. Then there exists a transition P
�[m]

P ′ if and only if

there exists an isomorphism f ∶ → ′ and a transition Init
{e}
←←←←←←←←←←←←←→ X such that �(e) = �,

(f◦k′)[e ↦ m] = k, and f (X) = Init′.

Proof. Implied by Proposition 4.8, Theorem 4.10, and Corollary 4.11.

C Section 5

C.1 EBES

Definition C.1 (Extended Bundle Event Structure [11]). An EBES is a triple =
(E,↦,⊳) where:

1. E is the set of events;
2. ↦⊆ 2E×E is the bundle set, satisfyingX ↦ e ⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒ e1⊳e2);
3. ⊳ ⊆ E × E is the asymmetric conflict relation, which is irreflexive.

Definition C.2 (EBES configuration [11]). Given an EBES = (E,↦,⊳), a config-
uration of is a set X ⊆ E such that there exists a sequence e0,… , en such that:

1. {e0,… , en} = X;
2. if ei ⊳ ej then j < i;
3. if X ↦ ei then X ∩ {e0,… , ei−1} ≠ ∅.

A category of EBESs has not, to our knowledge, been defined, and so we define one
with product and coproduct.

Definition C.3 (EBES-morphism).Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1
,⊳1), a EBES-morphism from 0 to 1 is a partial function f ∶ E0 → E1 such that and
for all e, e′ ∈ E0:

33

1. if f (e) ⊳1 f (e′) then e ⊳0 e′.
2. if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ⊳0 e′;
3. forX1 ⊆ E1 ifX1 ↦1 f (e) then there existsX0 ⊆ E0 such thatX0 ↦0 e, f (X0) ⊆
X1, and if e′ ∈ X0 then f (e′) ≠ ⊥;

4. for anyX0 ⊆ E0, ifX0 is a configuration of 0, then f (X0) is a configuration of 1.

Proposition C.4. Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1) and EBES-
morphism f ∶ E0 → E1, ifX ⊆ E0 is a configuration of 0, then f (X) is a configuration
of 1.

Proof. Similar to proof of Proposition A.4.

Proposition C.5. EBES consisting of EBESs and EBES-morphisms is a category.

Proof. Partial functions are associative and f (e) = e works as a an identity arrow, so
we need to show that the morphisms are composable:

If 0 = (E0,↦0,⊳0), 1 = (E1,↦1,⊳1), and 2 = (E2,↦2,⊳2) are EBESs and
f ∶ E0 → E1 and g ∶ E1 → E2 are morphisms, we show that f◦g ∶ E0 → E2 is also
a morphism:

1. If g(f (e)) ⊳2 g(f (e′)) then f (e) ⊳1 f (e′), and therefore e ⊳0 e′.
2. If g(f (e)) = g(f (e′)) and e ≠ e′, then either f (e) = f (e′), in which case e⊳0 e′, or
f (e) ≠ f (e′), in which case f (e) ⊳1 f (e′), and therefore e ⊳0 e′.

3. If X2 ↦2 g(f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 ↦1 f (e),
X0 ↦0 e, g(X1) ⊆ X2, f (X0) ⊆ X1 and if e1 ∈ X1 then g(e1) ≠ ⊥ and if e0 ∈ X0
then f (e0) ≠ ⊥. This means that g(f (X0)) ⊆ X2, and if e0 ∈ X0 then g(f (e0)) ≠ ⊥.

4. If X0 is a configuration of 0 then f (X0) is a configuration of 1, and therefore
g(f (X0)) is a configurations of 2.

We also define a product in this category in Definition C.6.

Definition C.6 (Product of EBESs). Let 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1) be
bundle event structures. Their product 0 × 1 is the EBES = (E,↦,⊳) define by:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1}.

2. projections �0, �1 are defined so that for (e0, e1) ∈ E, �i((e0, e1) = ei.
3. for any e ∈ E, X ⊆ E, X ↦ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi}.

4. for any e, e′ ∈ E, e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′).

Proposition C.7. Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1), 0 × 1 =
(E,↦,⊳) is a product.

Proof. We first show that �0 and �1 are morphisms:

1. If �i(e) ⊳i �i(e′), then obviously e ⊳ e′.
2. If �i(e) = �i(e′) and e ≠ e′, then �1−i(e) ≠ �1−i(e′), and therefore e ⊳ e′.

34

3. If Xi ↦ �i(e), then {e′ ∈ E ∣ �i(e′) ∈ Xi} ↦ e. Clearly �i({e′ ∈ E ∣ �i(e′) ∈
Xi}) = Xi, and for all e′ ∈ {e′ ∈ E ∣ �i(e′) ∈ Xi}), �i(e′) ≠ ⊥.

4. IfX is a configuration of 0×1, then we show that �i(X) satisfies the requirements
of a configuration of i. We show that if the requirements of Definition C.2 hold for
e0, ,̇en, then they hold for �i(e0),… , �i(en):
(a) Obviously {�i(e0),… , �i(en)} = �i(X).
(b) If �i(ej) ⊳i �i(ej′), then as shown above, ej ⊳ ej′ , meaning j′ < j.
(c) Whenever Yi ↦ �i(ej+1), we know {e′ ∈ E ∣ �i(e′) ∈ Yi} ↦ ej+1, mean-

ing {e′ ∈ E ∣ �i(e′) ∈ Yi} ∩ {e1,… , ej} ≠ ∅. Therefore, we must get
Yi ∩ {�i(e1),… , �i(ej)} ≠ �i(∅) = ∅.

We then show that for any EBES, 2 = (E2,↦2,⊳2), if there exist morphisms f0 ∶
2 → 0 and f1 ∶ 2 → 1, then there exists a unique morphism f ∶ 2 → , such
that f2◦�0 = f0 and f2◦�1 = f1. Since EBES-morphisms are functions, they are all
unique.

We define f by f (e) = (f0(e), f1(e)), meaning the morphisms clearly commute as
described above, and prove it to be a morphism:

1. If f (e) ⊳ f (e′) then there exists i ∈ {0, 1} such that either �i(f (e)) ⊳i �i(f (e′)), in
which case clearly fi(e)⊳ifi(e′)i, and therefore e⊳2e′, or �i(f (e))) = �i(f (e′)) ≠ ⊥
and �1−i(f (e)) ≠ �1−i(f (e′)), in which case fi(e) = fi(e′) ≠ ⊥, and e ≠ e′,
meaning e ⊳2 e′.

2. If f (e) = f (e′) ≠ ⊥ then f0(e) = f0(e′) ≠ ⊥ or f1(e) = f1(e′) ≠ ⊥, meaning if
e ≠ e′ then e ⊳2 e′.

3. For X ⊆ E, if X ↦ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi}. And since Xi ↦ fi(e), there exists
X2 ⊆ E2 such that X2 ↦2 e, fi(X2) ⊆ Xi, and if e′ ∈ X2 then fi(e′) ≠ ⊥. Clearly
f (X2) ⊆ X.

4. If X is a configuration of 2, then we show that f (X) satisfies the requirements of
a configuration of 0 × 1. We show that if the requirements of Definition C.2 hold
for e0, ,̇en, then they hold for f (e0),… , f (en):
(a) Obviously {f (e0),… , f (en)} = f (X).
(b) If f (ej) ⊳ f (ej′), then as shown above, ej ⊳2 ej′ , meaning j′ < j.
(c) Whenever Y ↦ f (ej+1), we know {e′ ∈ E ∣ f (e′) ∈ Y } ↦ ej+1, mean-

ing {e′ ∈ E ∣ f (e′) ∈ Y } ∩ {e1,… , ej} ≠ ∅. Therefore, we must get Y ∩
{f (e1),… , f (ej)} ≠ f (∅) = ∅.

Definition C.8 (EBES coproduct).Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1
,⊳1), their coproduct 0 + 1 = (E,↦,⊳) where:

– E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
– injections i0, i1 are defined so that for e ∈ Ej , ij(e) = (j, e) for j ∈ {0, 1};
– X ↦ (j, e) iff for all (j′, e′) ∈ X, j = j′ and ij(X)↦j e;
– (j, e) ⊳ (j′, e′) iff j ≠ j′ or e ⊳j e′.

Proposition C.9. If 0 and 1 are EBESs, then 0 × 1 is their coproduct.

Proof. Similar to that of BES coproduct.

35

C.2 REBES Category

Definition C.10 (REBES-morphism).Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 =
(E1, F1,↦1,⊳1), an REBES-morphism from 0 to 1 is a partial function f ∶ E0 → E1
such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) = f (e′) and e ≠ e′ then e ♯0 e′;
2. for X1 ⊆ E1 if X1 ↦1 f (e)∗ then there exists X0 ⊆ E0 such that f (X0) ⊆ X1, if
e′ ∈ X0 then f (e′) ≠ ⊥, and X ↦0 e∗;

3. if f (e) ⊳1 f (e′)∗ then e ⊳0 e′
∗.

Definition C.11 (Product ofREBESs). Let 0 = (E0, F0,↦0,⊳0) and 1 = (E1, F1,↦1
,⊳1) be reversible bundle event structures. Their product 0 × 1 is the REBES =
(E, F,↦,⊳) define by:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0×∗F1 = {(e, ∗) ∣ e ∈ F0}∪{(∗, e) ∣ e ∈ F1}∪{(e, e′) ∣ e ∈ F0 and e′ ∈ F1};
3. projections �0, �1 are defined so that for (e0, e1) ∈ E, �i((e0, e1) = ei;
4. for any e∗ ∈ E ∪ F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such

that Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e ∈ E, e′∗ ∈ E∪F , e⊳e′∗ iff there exists i ∈ {0, 1} such that �i(e)⊳i�i(e′)∗.

Proposition C.12. Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 = (E1, F1,↦1,⊳1),
0 × 1 = (E, F,↦,⊳) is a product.

Proof. Similar to proof of Proposition C.7.

Definition C.13 (REBES coproduct). Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 =
(E1, F1,↦1,⊳1), their coproduct 0 + 1 = (E, F,↦,⊳) where:

– E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
– F = {(0, e) ∣ e ∈ F0} ∪ {(1, e) ∣ e ∈ F1};
– injections i0, i1 are defined so that for e ∈ Ej , ij(e) = (j, e) for j ∈ {0, 1};
– X ↦ (j, e)∗ iff for all (j′, e′) ∈ X, j = j′ and ij(X)↦j e∗;
– (j, e)∗ ⊳ (j′, e′) iff j ≠ j′ or e∗ ⊳j e′.

Proposition C.14. If 0 and 1 are REBESs, then 0 + 1 is their coproduct.

Definition C.15 (From REBES to CS). The functor Cer ∶ REBES → CS is defined
as:

1. Cer((E, F,↦,⊳)) = (E, F,C,→) where:
(a) X ∈ C if ⊳ is well-founded on X;

(b) For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y if:

i. Y = (X ⧵ B) ∪ A; X ∩ A = ∅; and B ⊆ X;
ii. for all e∗ ∈ A ∪ B, if e′ ⊳ e∗ then e′ ∉ X ∪ A;
iii. for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
iv. for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

36

2. Cer(f) = f .

The definition of a causal REBES (Definition C.16) is of course practically identical to
that of a CRBES.

Definition C.16 (Causal REBES). (E, F,↦, ♯,⊳, �,Act) is a causal REBES (CREBES)
if (1) if e ⊳ e′ then either e ♯ e′ or there exists an X ⊆ E such that X ↦ e and e′ ∈ X,
(2) if e ⊳ e′ or X ↦ e and e′ ∈ X ∩ F , then e ⊳ e′, and (3) if X ↦ e then e ∈ X.

Proposition C.17.

1. Given a CREBES, = (E, F,↦,⊳) and corresponding CS Cer() = (E, F,C,→),
any reachable C ∈ C is forwards-reachable.

2. If = (E, F,↦, ♯,⊳) is a CREBES and Cbr() = (E, F,C,→) then whenever

X ∈ C, X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y and A ∪ B ⊆ F , we get a transition Y

B∪A
←←←←←←←←←←←←←←←←←←←→ X.

Proof. Similar to the proof of Proposition 3.8

Definition C.18 (Labelled Reversible Bundle Event Structure (LREBES)). A la-
belled reversible extended bundle event structure = (E, F,↦,⊳, �,Act) consist of
an REBES (E, F,↦,⊳), a set of labels Act, and a surjective labelling function � ∶ E →
Act.

Definition C.19 (LRBES-morphism).Given LREBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)
and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), a LREBES morphism f ∶ 0 → 1 is a par-
tial function f ∶ E0 → E1 such that f ∶ (E0, F0,↦0,⊳0) → (E1, F1,↦1,⊳1) is an
REBES-morphism and for all e ∈ E0, either f (e) = ⊥ or �0(e) = �1(f (e)).

D Section 6

D.1 Propagation Rules

D.2 Lemma D.1

Lemma D.1. Let P be a consistent process with no subprocess rolling and let C be a
set of tags such that if ∈ C and ≤P ′ then ′ ∈ C . Then P C →∗ P .

Proof. We prove this by induction on the size of C .
Suppose C = ∅. Then P C = P .
Suppose P C′ →∗ P and C = C ′ ∪ {} for some such that if ′ ≤P then

 ′ ∉ C ′. Then if there does not exist an action � and key n such that � [n] occurs in P ,
then P C = P C′ →∗ P . If there exists a process P ′, an action � and key n such that
� [n].P ′ is a subprocess of P then all past actions of P ′ are inC ′, meaning P ′ C = rt(P ′),

and since ′ ≤P ⇒ ′ ∉ C ′, we get P C
� [n]
←←←←←←←←←←←←←←←←←←←→ P C′ →∗ P .

D.3 Proof of Theorem 6.6

Proof. Follows from Lemma D.1.

37

(bound)
P

�[m]
←←←←←←←←←←←←←←←→ P ′

(�)P
�[m]
←←←←←←←←←←←←←←←→ (�)P ′

(prop ROLL start 1)
P

start roll
P ′

�′ [n].P
start roll

�′ [n].P ′

(prop ROLL 1)
P

roll
P ′ ≠ ′

�′ [m].P
roll

�′ [m].P ′
(prop ROLL start 2)

P0
start roll

P ′
0

P0 ∣ P1
start roll

P ′
0 ∣ P1

(prop ROLL 2)
P

roll
P ′

�′ .P
roll

�. ′.P ′
(prop ROLL start 3)

P
start roll

P ′

P ⧵ A
start roll

P ′ ⧵ A

(prop ROLL 3)
P0

roll
P ′
0

P0 + P1
roll

P ′
0 + P1

(prop ROLL start 4)
P

start roll
P ′

P [f]
start roll

P ′[f]

(prop ROLL 4)
P

roll
P ′

P ⧵ A
roll

P ′ ⧵ A
(prop ROLL start 5)

P
start roll ′

P ′

(�)P
start roll ′

(�)P ′

(prop ROLL 5)
P

roll
P ′

P [f]
roll

P ′[f]
(prop ROLL start 6)

P ≡ Q
start roll ′

Q′ ≡ P ′

P
start roll ′

P ′

(prop ROLL start 7)
P0

start roll
P ′
0 std(P1) rolling ′ is not a subprocess ofP1

P0 + P1
start roll

P ′
0 + P1

(prop ROLL 6)
P

roll ′

P ′ ′ ≠

(�)P
roll ′

(�)P ′
(prop ROLL 7)

P ≡ Q
roll ′

Q′ ≡ P ′

P
roll ′

P ′

Table 5. The operational semantics for propagation of rolls and bound tags in Roll-CCSK

38

D.4 Proof of Theorem 6.9

Proof. To get P ′′ we apply first
start roll i

for every mi ∈ T and then
roll bound

or
roll i

for every mi ∈ T to P . We show that this is the correct P ′′.
Let Pr be P with every rolling replaced with roll . Then Pr ⇝∗ P ′′r , where P

′′
r is

P ′′ with every rolling replaced with roll using the same rules as P ⇝∗ P ′′.
By the loop theorem we get P ′′r →∗ Pr. And since �(Pr) = �(P) and �(P ′′r) =

�(P ′′), we can translate this computation into CCSK: �(P ′′) →∗
CCSK �(P). From the

loop lemma of CCSK, this gives us �(P)⇝∗
CCSK �(P ′′). And obviously �(P ′′) ⇝̸T .

We then only need to show that if �(P) ⇝∗
T P ′ ̸⇝T , then P ′ = �(P ′′). We then

only need to show that if �(P) ⇝∗
T P

′ ̸⇝T , then P ′ = �(P ′′). Since they both reverse
all the keys causally dependent on keys in T , this follows from proposition 5.16 of [19].

E Section 7

E.1 Proof of Proposition 7.3

We use the following lemmas:

Lemma E.1. Let P0 and P1 be consistent processes such that ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, and 0 ≤ 1. If there existsA

⟨

b̃, �̃
⟩

in P0 such thatA(ã, ̃) = PA
andP1 = P0{A⟨b̃,�̃⟩∕(� �̃)PA{ã,̃∕b̃,�̃}}, and an action � such that

⦃

� .P0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and
⦃

� .P1
⦄

=
⟨

 ′1, Init
′
1, k

′
1
⟩

, then ′0 ≤ ′1.

Proof. Obviously E′0 ⊆ E
′
1 and F

′
0 = F

′
1 ∩ E0

If X ↦′
0 e then either X ↦0 e, or X = {e�}, e ∈ E0, and �0(e) ≠ roll ′.

If X ↦0 e then there exists some X1 ⊆ E1 such that X1 ∩ E0 = X0 and X1 ↦1 e,
meaning X1 ↦′

1 e and X1 ∩ E
′
0 = X0.

If X = {e�}, e ∈ E0, and �0(e) ≠ roll ′ then e ∈ E1 and �1(e) = �0(e) ≠ roll ′,
meaning {e�}↦′

1 e.
IfX ↦′

1 e and e ∈ E
′
0 then eitherX ↦1 e, orX = {e�}, e ∈ E1, and �1(e) ≠ roll ′.

If X ↦1 e and e ∈ E′0 then X ∩ E0 = X ∩ E′0 ↦0 e, meaning X ∩ E′0 ↦0 e.
If e ∈ E′0, X = {e�}, e ∈ E1, and �1(e) ≠ roll ′, then �0(e) = �1(e) ≠ roll ,

meaning {e�}↦′
0 e.

If X ↦′
0 e then either X = {e}, or e = e� and X = {e′ ∈ E0 ∣ �0(e′) = roll },

or �0(e) ∈ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0} and
X ↦0 e, or �0(e) ∉ {roll ′, roll bound}∪{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0},
{e} ≠ X′ ↦0 e, and X = X′ ∪ {e′ ∣ �0(e′) = roll }.

If X = {e} then obviously X ↦′
1 e.

If e = e� and X = {e′ ∈ E0 ∣ �0(e′) = roll } then X = {e′ ∈ E1 ∣ �1(e′) =
roll } ∩ E0 and {e′ ∈ E1 ∣ �1(e′) = roll }↦′

1 e.
If �0(e) ∈ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0}

andX ↦0 e then �1(e) ∈ {roll ′, roll bound}∪{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P1}
and there exists X1 such that X1 ∩ E0 = X and X1 ↦1 e, meaning X1 ↦′

1 e.

39

If �0(e) ∉ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0},
{e} ≠ X′ ↦0 e, and X = X′ ∪ {e′ ∣ �0(e′) = roll } then there exists X′

1 ⊆ E1 such
that X′

1 ∩ E0 = X′ and X′
1 ↦1 e. This means X′

1 ∪ {e
′ ∈ E1 ∣ �1(e′) = roll } ↦′

1 e,
and clearly {e′ ∈ E1 ∣ �1(e′) = roll } ∩ E0 = {e′ ∈ E0 ∣ �0(e′) = roll }, meaning
(X′

1 ∪ {e
′ ∈ E1 ∣ �1(e′) = roll }) ∩ E′0 = X.

If X ↦′
1 e and e ∈ E

′
0 then either X = {e}, or e = e� and X = {e′ ∈ E1 ∣ �1(e′) =

roll }, or �1(e) ∈ {roll ′, roll bound}∪{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P1}
and X ↦1 e, or �1(e) ∉ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs
in � .P1}, {e} ≠ X′ ↦1 e, and X = X′ ∪ {e′ ∣ �1(e′) = roll }.

If X = {e} then obviously X ↦′
0 e.

If e = e� and X = {e′ ∈ E1 ∣ �1(e′) = roll } then {e′ ∈ E0 ∣ �0(e′) = roll } ↦′
0 e

and obviously X ∩ E′0 = {e
′ ∈ E0 ∣ �0(e′) = roll }.

If �1(e) ∈ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P1}
and X ↦1 e then �0(e) ∈ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs
in � .P0}, and X ∩ E0 ↦0 e, meaning X ∩ E0 ↦′

0 e.
If �1(e) ∉ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P1},

{e} ≠ X′ ↦1 e, and X = X′ ∪ {e′ ∣ �1(e′) = roll } then X′ ∩ E0 ↦0 e, meaning
(X′ ∩ E0) ∪ {e′ ∣ �0(e′) = roll } ↦′

0 e, and obviously X ∩ E0 = (X′ ∩ E0) ∪ {e′ ∣
�0(e′) = roll }.

If e⊳′0 e
′∗ then either �0(e) ∈ {roll ′, roll bound}∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n]

occurs in � .P0} and e′∗ = e� , or e = e� , e′∗ = e′ and �0(e′) = roll , or �0(e) = roll
and e′∗ = e� , or �0(e) = roll , e′∗ = e′, and �0(e′) ∉ {roll ′, roll bound}∪{start roll ′ ∣
∄�, n.�′ or �′ [n] occurs in � .P0}.

If �0(e) ∈ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0}
and e′∗ = e� , then �1(e) ∈ {roll ′, roll bound}∪{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs
in � .P1}, and therefore e ⊳′1 e� .

If e = e� , e′∗ = e′ and �0(e′) = roll then �1(e′) = roll , and therefore e� ⊳′1 e
′.

If �0(e) = roll and e′∗ = e� , then �1(e) = roll , and therefore e ⊳′1 e� .
If �0(e) = roll , e′∗ = e′, and �0(e′) ∉ {roll ′, roll bound} ∪ {start roll ′ ∣

∄�, n.�′ or �′ [n] occurs in � .P0}, then �1(e) = roll and �1(e′) ∉ {roll ′, roll bound}∪
{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P0}, meaning e ⊳′1 e

′.
If e ⊳′1 e

′∗ for e, e′ ∈ E0 then the argument is similar.
Obviously �′0 = �

′
1 ↾E′0

and Act is the range of �′0.

Lemma E.2. Let P0 and P1 be consistent processes such that ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, and 0 ≤ 1. If there exists A

⟨

b̃, �̃
⟩

in P0 such that A(ã, ̃) =
PA and P1 = P0{A⟨b̃,�̃⟩∕(� �̃)PA{b̃,�̃∕ã,̃}}, and an action � such that

⦃

� [m].P0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and
⦃

� [m].P1
⦄

=
⟨

 ′1, Init
′
1, k

′
1
⟩

, we get ′0 ≤ ′1.

Proof. Follows from Lemma E.1 and the definitions of
⦃

� [m].P0
⦄

and
⦃

� [m].P1
⦄

Lemma E.3. LetP0 ∣ P2,P1 ∣ P2 be consistent processes such that⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, ⦃P0 ∣ P2⦄ =

⟨

 ′0, Init
′
0, k

′
0
⟩

, ⦃P1 ∣ P2⦄ =
⟨

 ′1, Init
′
1, k

′
1
⟩

, and
0 ≤ 1. Then ′0 ≤ ′1.

40

Proof. For all e ∈ E′0 we know either e ∈ E0×∗E2 and �′0(e) ∈ {roll , start roll , roll bound,
or e = (X, e′) for some e′ ∈ E0 ×∗ E2 and X ∈ causes(e′). If e ∈ E0 ×∗ E2 and
�′0(e) ∈ {roll , start roll , roll bound then obviously e ∈ E′1. If e = (X, e′) then if
e′ = (e0, ∗) then for each (e′0, e

′
2) ∈ X there exists X0 such that e′0 ∈ X0 and X0 ↦0 e0.

This means there exists X1 ⊆ E1 such that X1 ↦1 e0 and X0 = X1 ∩ E0. In ad-
dition, for any X′

1 ⊆ E1 such that X′
1 ↦1 e0, we have X′

1 ∩ E0 ↦0 e0, and therefore
(X′

1×E2)∩X ≠ ∅. We therefore get e ∈ E′1. If e
′ = (∗, e2) then obviously e2’s causes are

the same in ′1 and therefore e
′ ∈ E′1. If e

′ = (e0, e2) then the argument is a combination
of the first two cases.

Obviously F ′0 = E
′
0 ∩ E

′
1.

If X ↦′
0 e then either e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈ X′, or

e = (e0, e2) and there exists X′ such that X′ ↦0×2 e and X = {e′ ∣ (�0(e′), �2(e′)) ∈
X′}.

If e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈ X′ then clearly X ↦′
1 e.

If e = (e0, e2) and there existsX′ such thatX′ ↦0×2 e andX = {e′ ∣ (�0(e′), �2(e′)) ∈
X′} thenX′ ↦1×2 e, and obviously {e′ ∣ (�0(e′), �2(e′)) ∈ X′} = {e′ ∣ (�1(e′), �2(e′)) ∈
X′} ∩ E′0.

If X ↦′
1 e and e ∈ E′0 then either e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′},

and e′′ ∈ X′, or e = (e1, e2) and there exists X′ such that X′ ↦1×2 e and X = {e′ ∣
(�1(e′), �2(e′)) ∈ X′}.

If e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈ X′ then since e ∈ E′0, for all
e′′′ ∈ X′, �1(e′′′) ∈ E0, meaning X ⊆ E′0, and X ↦′

0 e.
If e = (e1, e2) and there existsX′ such thatX′ ↦1×2 e andX = {e′ ∣ (�1(e′), �2(e′)) ∈

X′} then e1 ∈ E0 ∪ {∗}, and X′ ∩ (E0 ×∗ E2) ↦0×2 e, meaning X ∩ E′0 = {e′ ∣
(�0(e′), �2(e′)) ∈ X′ ∩ (E0 ×∗ E2)}↦ e.

If X ↦′
0 e then either X = {e}, or e = (X′, (e0, e2)) and X =

⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 2}, Xi ∈ Ei.Xi ↦ �i(e)
or ∃e× ∈ X′.Xi ↦ �i(e×)
, and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

, or e = (e0, e1) and there exists X′ such that

X′ ↦×0 e and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}.
If X = {e} then obviously X ↦′

1 e.

If e = (X′, (e0, e2)) andX =

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
, and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

then (1) for

each X0 such that X0 ↦0 e0, there exists X1 such that X1 ↦1 e0 and X1 ∩ E0 = X0,
and (2) for eachX0 such that there exists (e′0, e

′
2) ∈ X

′, such thatX0 ↦′
0 e0, there exists

X1 such that X1 ↦1 e′0 and X1 ∩ E0 = X0, meaning

⋃

⎧

⎪

⎨

⎪

⎩

X′′
|

|

|

|

|

|

|

∃i ∈ {1, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
, and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

∩ E0 = X

41

If e = (e0, e1) and there exists X′ such that X′ ↦0×2 e and X = {e′ ∣ (�0(e′), �1(e′)) ∈
X′}, then since || is monotonic, there exists X′′ such that X′ = X′′ ∩ (E0 ×∗ E2) and
X′′ ↦1×2 e, meaning {e′ ∣ (�1(e′), �1(e′)) ∈ X′′}↦′

1 e.
If X ↦′

1 e and e ∈ E′0 then X = {e}, or e = (X′, (e1, e2)) and X =
⋃

{X′′ ∣
∃i ∈ {0, 1}.�i(X′′) ↦ ei or ∃e′ ∈ X′.�i(X′′) ↦i �i(e′)}. If X = {e} then obviously

X ↦′
0 e. If e = (X′, (e1, e2)) and X =

⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {1, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
, and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

then for each X1 such that X1 ↦ e1, we know X1 ∩ E0 ↦ e1, and for each X1 such
that there exists (e′1, e

′
2) ∈ X′ such that X1 ↦′

1 e1, since e ∈ E′0, e
′
1 ∈ E0, meaning

X1 ∩ E0 ↦ e1. Therefore X ∩ E′0 ↦
′
0 e1.

If e ⊳′0 e
′∗ then there exists i ∈ {0, 2} such that either (1) �i(e) ⊳i �i(e′)∗, or (2)

�i(e) = �i(e′) ≠ ⊥, or (3) e′∗ = e′, e ≠ e′, and e ∈ X ↦ e′, or (4) and there exist ,
 ′ such that �(e) = roll and �(e′) = roll ′. In all these cases it is clear that the same
conditions will apply in ′1.

Similar logic applies if e ⊳′1 e
′∗ and e, e′ ∈ E′0.

Obviously �′0 = �
′
1 ↾E′0

and Act is the range of �′0.

Lemma E.4. Let P0 and P1 be consistent processes such that ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, and 0 ≤ 1. If there exists a tag such that ⦃(�)P0⦄ =
⟨

 ′0, Init
′
0, k

′
0
⟩

and ⦃(�)P1⦄ =
⟨

 ′1, Init
′
1, k

′
1
⟩

, we get ′0 ≤ ′1.

Proof. Obvious

And having those lemmas makes the proof simple.

Proof. Follows from Lemmas E.1, E.2, E.3, and E.4 and Proposition 4.7.

E.2 Lemma E.5

Lemma E.5 (Causal consistency of actions). LetP be a process and⦃P⦄ = ⟨ , Init, k⟩.
Then for any events e, e′, if e ∈ X ↦ e′ and e′ ̸ ⊳e, then there exists such that
�(e′) ∈ {roll , roll bound, start roll }.

Proof. We prove this by structural induction in P .
Suppose P = 0. Then there are no events and the lemma is trivially true.
Suppose P = roll . Then e ∈ X ↦ e′ means e = et and e′ = er, and obviously
�(e′) = roll .
Suppose P = rolling . Then the argument is the same as the previous case.
Suppose P = �′ .P ′. Then ⦃P ′⦄ = ⟨ ′, Init, k⟩ and either X ↦′ e′ or X = {e�}. If
X ↦′ e′ then e′ ≠ e� and by induction if e′ ̸ ⊳′e then �(e′) ∈ {roll , roll bound, start roll }.
If X = {e�} then, e′ ⊳ e� unless �(e′) ∈ {roll , roll bound, start roll }.
Suppose P = �′ .[m]P ′. Then the argument is the same as the previous case.
Suppose P = P0 + P1. Then e = (i, ei), e′ = (i, e′i), ei ↦i e′i, and e

′
i ̸ ⊳iei, meaning

�i(e′i) ∈ {roll , roll bound, start roll }, and therefore �(e
′) ∈ {roll , roll bound, start roll }.

42

Suppose P = P0 ∣ P1. Then if e′ = (Y ′, e′′), e = (Y , e′′′) and e′′′ ∈ Y ′, meaning there
exists i ∈ {0, 1} such that �i(e) ∈ Xi ↦i �i(e′). By induction we get that, if e′i ̸⊳iei,
then there exists such that �i(e′i) ∈ {roll , roll bound, start roll }, meaning e′1−i =∗
and �(e′) ∈ {roll , roll bound, start roll }, and if e′i ⊳i ei then e

′ ⊳ e. If e′ ∈ E× then
�(e′) ∈ {roll , roll bound, start roll }
Suppose P = P ′ ⧵ A. Then the lemma follows from induction.
Suppose P = (� ′)P ′. Then the lemma follows from induction.
Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.3 Lemma E.6

Lemma E.6 (Transitive causation). Let P be a process and ⦃P⦄ = ⟨ , Init, k⟩. Then
whenever X ↦ e ∈ X′ ↦ e′, we have X ↦ e′, or there exists a such that �(e′) ∈
{roll , roll bound}.

Proof. We prove this by structural induction on P .

– Suppose P = 0. Then there are no events and the lemma is trivially true.
– Suppose P = roll . Then no X,X′, e, e′ exist such that X ↦ e ∈ X′ ↦ e′.
– Suppose P = rolling . Then the argument is the same as the previous case.
– Suppose P = �′ .P ′. Then ⦃P ′⦄ = ⟨ ′, Init, k⟩, X′ ↦′ e′, and either X = {e�},
or X ↦′ e. If X = {e�}, then X ↦ e′ whenever �(e′) ≠ roll ′. If X ↦′ e and
X′ ↦′ e′ then by induction, X ↦ e′.

– Suppose P = �′ .[m]P ′. Then the argument is the same as the previous case.
– SupposeP = P0+P1. Then there exists an i ∈ {0, 1} such that e = (i, ei), e′ = (i, e′i),
{e′′i ∣ (i, e

′′
i) ∈ X′} ↦i e′i, and {e

′′
i ∣ (i, e

′′
i) ∈ X} ↦i ei, meaning by induction

{e′′i ∣ (i, e
′′
i) ∈ X}↦i e′i, and therefore X ↦ e′.

– Suppose P = P0 ∣ P1. Then e′ = (Y ′, (e′0, e
′
1)) or there exists a such that �(e′) ∈

{roll , roll bound}. If e′ = (Y ′, (e′0, e
′
1)) then e = (Y , (e0, e1)) and (e0, e1) ∈ Y ′,

meaning there exists i ∈ {0, 1} such that ei ∈ Xi ↦i e′i. Similarly,X = {(Y ′′, e′′) ∣
(Y ′′, e′′) ∈ E} for some e′′ ∈ Y . Since Y ∈ cause(e) and e ∈ Y ′ ∈ cause(e′), there
exists Y ′′ ∈ cause(e′) such that Y ⊆ Y ′′. This means X ↦ e.

– Suppose P = P ′ ⧵ A. Then the lemma obviously follows from induction.
– Suppose P = (� ′)P ′. Then the lemma obviously follows from induction.
– Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.4 Lemma E.7

Lemma E.7 (forwards bundles). Let P be a process and ⦃P⦄ = ⟨ , Init, k⟩. Then
whenever X ↦ e, either there exists e′ such that X = {e′}, or there exists a such that
�(e) ∈ {roll , roll bound}.

Proof. We prove this be structural induction on P .

– Suppose P = 0. Then E = ∅ and the case is trivial.
– Suppose P = roll . Then e′ = et and e = er.

43

– Suppose P = rolling . Then e′ = et and e = er.
– Suppose P = � .P ′. Then by induction, if X ↦P ′ e, then there exists an e′ such

that X = {e′}. If X ̸↦P ′ e, then X = {e�}.
– Suppose P = � [m].P ′. Then by induction, if X ↦P ′ e, there exists an e′ such that
X = {e′}. If X ̸↦P ′ e, then X = {e�}.

– Suppose P = P0 + P1. Then, by induction if e = (i, ei) and Xi ↦i ei, then Xi = e′i,
and e′ = (i, e′i).

– Suppose P = P0 ∣ P1. Then either e = (Y , e×) or there exists a such that �(e) ∈
{roll , roll bound}. If e = (Y , e×) then X = {(Y ′′, e′′) ∣ (Y ′′, e′′) ∈ E} for some
e′′ ∈ Y . We therefore need to show that given an event e′′ ∈ Y , there exists exactly
one Y ′′ ∈ cause(e′′) such that Y ′′ ⊆ Y . This follows naturally from items 2 and 3
of Definition 7.1.

– Suppose P = P ′ ⧵ A. Then the lemma obviously follows from the definition of �.
– Suppose P = (�)P ′. Then the lemma obviously follows from induction.
– Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.5 Lemma E.8

Lemma E.8 (Reverse inverse causality). Let P be a process and ⦃P⦄ = ⟨ , Init, k⟩.
Then whenever e′ ∈ X ↦ e and e ≠ e′, we get e′ ⊳ e.

Proof. We prove this by structural induction on P :

– Suppose P = 0. Then E = ∅ and the case is trivial.
– Suppose P = roll . Then e′ = er and e = et.
– Suppose P = rolling . Then e′ = er and e = et.
– Suppose P = � .P ′. Then either e = e� and X = {e′′ ∣ �′P ′ (e

′′) = roll }, or
�P ′ (e) ∈ {roll ′, roll bound} and X ↦P ′ e, or �′P ′ (e

′′) ∉ {roll ′, roll bound},
{e} ≠ X′ ↦P ′ e, and X = X′ ∪ {e′′ ∣ �′P ′ (e

′′) = roll }.
In either case, it is clear that e′ ⊳ e.

– Suppose P = � [m].P ′. Then the argument is similar to the previous case.
– Suppose P = P0 + P1. Then, by induction if e = (i, ei) and e′i ∈ Xi ↦i ei, then
e′i ⊳ ei, and e

′ = (i, e′i), meaning e′ ⊳ e.
– Suppose P = P0 ∣ P1. Then the lemma holds by definition.
– Suppose P = P ′ ⧵ A. Then the lemma obviously follows from induction.
– Suppose P = (�)P ′. Then the lemma obviously follows from induction.
– Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.6 Lemma E.9

Lemma E.9 (Single backwards bundle).Given a processP such that⦃P⦄ = ⟨ , Init, k⟩,
for any event e ∈ F , there exists at most one bundle X ↦ e such that X ≠ {e}.

Proof. We prove this by structural induction in P :

– Suppose P = 0. Then E = ∅ and the case is trivial.

44

– Suppose P = roll . Then X = {er} and e = et.
– Suppose P = rolling . Then X = {er} and e = et.
– Suppose P = � .P ′. Then either e = e� and X = {e′′ ∣ �′P ′ (e

′′) = roll }, or
�P ′ (e) ∈ {roll ′, roll bound} and X ↦P ′ e, or �′P ′ (e

′′) ∉ {roll ′, roll bound},
{e} ≠ X′ ↦P ′ e, and X = X′ ∪ {e′′ ∣ �′P ′ (e

′′) = roll }.
In either case, it is clear that there exists only one X.

– Suppose P = � [m].P ′. Then the argument is similar to the previous case.
– Suppose P = P0 +P1. Then, by induction if e = (i, ei) then there exists at most one
Xi such that e′i ∈ Xi ↦i ei, meaning {i} ×Xi ↦ e.

– Suppose P = P0 ∣ P1. Then either e = (X′, e′), in which case the lemma obviously
holds, or there exists X′ such that X′ ↦× e and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}.
By induction, since there exists an i ∈ {0, 1} such that �i(e) = ⊥, there can only
exist one such X′.

– Suppose P = P ′ ⧵ A. Then the lemma obviously follows from induction.
– Suppose P = (�)P ′. Then the lemma obviously follows from induction.
– Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.7 Lemma E.10

Lemma E.10 (Reverse transitivity). Let P be a process and ⦃P⦄ = ⟨ , Init, k⟩. Then
whenever e′ ∈ X ↦ e, X′ ↦ e′, X′ ≠ {e′}, and �(e) = �, there must exist X′′ ⊇ X′

such that X′′ ↦ e.

Proof. We prove this by structural induction in P :

– Suppose P = 0, then E = ∅ and the case is trivial.
– Suppose P = roll . Then there does not exist any e such that �(e) = �.
– Suppose P = rolling . Then there does not exist any e such that �(e) = �.
– Suppose P = � .P ′. Then either X ↦P ′ e or X = {e�} and e ∈ EP ′ .
If X ↦P ′ e then there exists an XP ′ such that XP ′ ↦P ′ e and X′ = XP ′ ∪ {e′′ ∣
�P ′ (e′′) = roll }. This means there exists X′

P ′ such that X′
P ′ ↦P ′ e′, XP ′ ⊆ X′

P ′ ,
and X′

P ′ ∪ {e
′′ ∣ �P ′ (e′′) = roll } = X′′ ↦ underlinee.

If X = {e�} and e ∈ EP ′ then X′ = {e′′ ∣ �P ′ (e′′) = roll } and there exists an
XP ′ such thatXP ′ ↦P ′ e andX′′ = XP ′ ∪{e′′ ∣ �P ′ (e′′) = roll }, meaning clearly
X′ ⊆ X′′.

– Suppose P = � [m].P ′. Then the argument is similar to the previous case.
– Suppose P = P0 + P1. Then, if e = (i, ei) and e′ = (i, e′i) then there exists X′

i such
thatX′ = {i}×X′

i andX
′
i ↦ e′i, meaning there existsX′′

i ⊇ X
′
i such thatX

′′
i ↦ ei

and therefore {i} ×X′′
i = X

′′ ↦ e.
– Suppose P = P0 ∣ P1. Then either e = (Y , e×), or there existsX′ such thatX′ ↦× e
and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}.
If e = (Y , e×) then e′ = (Y ′, e′×) and Y

′ ∪ {e′×} ⊆ Y , and

X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦i �i(e′)
or ∃e′′× ∈ Y

′.Xi ↦i �i(e′′×)
, and e′′ ∈ X′′′ iff �i(e′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

.

45

We defineX′′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e′′× ∈ Y .Xi ↦i �i(e′′×)
, and e′′ ∈ X′′′ iff �i(e′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

and show thatX′ ⊆

X′′. By definition, since e× ∈ Y ′, whenever Xi ↦ �i(e′) we get �(e′′) ∈ Xi iff
e′′ ∈ X′′. And if there exists e′′× ∈ Y ′ such that Xi ↦ �i(e′′×) then, since Y

′ ⊆ Y ,
e′′× ∈ Y and therefore �(e′′) ∈ Xi iff e′′ ∈ X′′.

– Suppose P = P ′ ⧵ A. Then the lemma obviously follows from induction.
– Suppose P = (�)P ′. Then the lemma obviously follows from induction.
– Suppose P = A

⟨

b̃, �̃
⟩

. Then the lemma holds if it holds for PA.

E.8 Proof of Proposition 7.4

We use Lemmas E.5–E.10.

Proof. We say that = (E, F,↦,⊳, �,Act) and ′ = (E′, F ′,↦′,⊳′, �′,Act′) and do
a case analysis on the Structural congruence rules:

P = Q ∣ R and P ′ = R ∣ Q: Then there exist Q and R such that for i ∈ {Q,R},
⦃Pi⦄ = ⟨(Ei, Fi,↦i,⊳i, �i,Acti), Initi, ki⟩ and ⟨ , Init, k⟩ is composed of them as
defined in the event structure semantics.
And there exist ′Q and ′R such that for i ∈ {Q,R}, ⦃Pi⦄ =

⟨

(E′i , F
′
i ,↦

′
i,⊳

′
i, �

′
i,

Act′i), Init
′
i, k

′
i
⟩

and
⟨

 ′, Init′, k′
⟩

is composed of them as defined in the event struc-
ture semantics.
And by induction we have isomorphisms fQ ∶ Q → ′Q and fR ∶ R → ′R
fulfilling the conditions.

We first define a helper function f ′(e) =
⎧

⎪

⎨

⎪

⎩

(fR(eR), fQ(eQ)) if e = (eQ, eR)
(fR(eR), ∗) if e = (∗, eR)
(∗, fQ(eQ)) if e = (eQ, ∗)

, and

then our isomorphism f (e) =
{({f ′(e′′) ∣ e′′ ∈ X}, f ′(e′)) if e = (X, e′)
f ′(e) otherwise

. Since

the definition of parallel compositions treat both parts the same way, this clearly
fulfils the conditions.

P = P0 ∣ (P1 ∣ P2) and P ′ = (P0 ∣ P1) ∣ P2: Then there exist 0, 1, 2, and 1∣2 such
that ⦃P0⦄ = ⟨0, Init0, k0⟩, ⦃P1⦄ = ⟨1, Init1, k1⟩, ⦃P2⦄ = ⟨2, Init2, k2⟩,

⟨

1∣2,
Init1∣2, k1∣2

⟩

is made up of ⟨1, Init1, k1⟩ and ⟨2, Init2, k2⟩ as described in the paral-
lel composition rule, and ⟨ , Init, k⟩ is made up of ⟨0, Init0, k0⟩ and

⟨

1∣2, Init1∣2, k1∣2
⟩

as described in the parallel composition rule.
And there exist ′0,

′
1,

′
2, and 0∣1 such that ⦃P0⦄ =

⟨

 ′0, Init
′
0, k

′
0
⟩

, ⦃P1⦄ =
⟨

 ′1, Init
′
1, k

′
1
⟩

,⦃P2⦄ =
⟨

 ′2, Init
′
2, k

′
2
⟩

,
⟨

0∣1, Init0∣1, k0∣1
⟩

is made up of ⟨0, Init0, k0⟩
and ⟨1, Init1, k1⟩ as described in the parallel composition rule, and

⟨

 ′, Init′, k′
⟩

is made up of ⟨Z , InitZ , kZ⟩ and
⟨

0∣1, Init0∣1, k0∣1
⟩

as described in the parallel
composition rule. And there exist isomorphisms f0 ∶ 0 → ′0, f1 ∶ 1 → ′1, and
f2 ∶ 2 → ′2 satisfying the conditions of the proposition.

46

We define a helper function f01((e0, e1)) = (f0(e0), f1(e1)) if e0 ∈ E0 and e1 ∈ E1
and define the morphism

f (e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(f01((e0, e1)), f2(e2)) if e = (e0, (e1, e2))
(Y , ((Y ′, f01((e0, e1))), f2(e2))) if e = (X, (e0, (X′, (e1, e2)))),

Y ′ = {f01((e′0, e
′
1)) ∣ ∃e

′
2, X

′′.(e′0, (X
′′, (e′1, e

′
2))) ∈ X

and e′0 ∈ X0 ∈ cause(e0) or e′1 ∈ X1 ∈ cause(e1)},
and Y = {((f01(Y ′′), f01((e′0, e

′
1))), f2(e

′
2) ∈ E0∣1×2 ∣

∃X′′.(e′0, (X
′′, (e′1, e

′
2))) ∈ X and

for all (e′′0 , e
′′
1) ∈ Y

′′, e′0 ∈ X0 ∈ cause(e0) or
e′1 ∈ X1 ∈ cause(e1) and

f01(Y ′′) ∪ {f01((e′0, e
′
1))} ⊆ Y

′}

We first show that for any e = (X, (e0, (X′, (e1, e2)))), there exists at most one pos-
sible f (e) ∈ E′: Since causes must be conflict free, there can at most exist one e′2
and X′′ for each e′0 and e

′
1 such that (e′0, (X

′′, (e′1, e
′
2))) ∈ X, meaning there can

only exist one Y ′ and Y fulfilling the conditions.
We then show that for any e = (X, (e0, (X′, (e1, e2)))), there exists f (e′) = (Y , ((Y ′,
(e′0, e

′
1)), e

′
2)) ∈ E′: By induction, e′0 ∈ E′0, e

′
1 ∈ E′1, and e

′
2 ∈ E′2, so we show

that (Y ′, (e′0, e
′
1)) ∈ E0∣1. We know there exists X1 ∈ cause(e1) such that X1 ⊆

�1(X′) = �1(�1∣2(X)), and there exists X0 ∈ cause(e0) such that X0 ⊆ �0(X).
And since for all e ∈ Y ′, either e′0 ∈ X0 ∈ cause(e0) or e′Y ∈ XY ∈ cause(e1),
we get that Y ′ ∈ cause((f0(e0), f1(e1))), and therefore (Y ′, (f0(e0), f1(e1))) ∈
E0∣1. And for similar reasons Y ∈ cause(((Y ′, (f0(e0), f1(e1))), f2(e2))), meaning
(Y , ((Y ′, (f0(e0), f1(e1))), f2(e2))) ∈ E′.
We then show that for any e′ = (X, ((X′, (e′0, e

′
1)), e

′
2)) ∈ E′, there exists e =

(Y , (e0, (Y ′, (e1, e2)))) ∈ E such that f (e) = e′. By induction, there obviously exist
e0, e1, e2 such that f0(e0) = e′0, f1(e1) = e′1, and f2(e2) = e′2. We also know there
exist X0 ∈ cause(e′0), X1 ∈ cause(e′1), and X2 ∈ cause(e′2) such that (1) whenever
((X′′, (e′′0 , e

′′
1)), e

′′
2)) ∈ X, either e′′0 ∈ X0 or e′′1 ∈ X1 or e′′2 ∈ X2, and for each

(e′′′0 , e
′′′
1) ∈ X

′′, there exists X′′′ ⊆ X′′ and e′′′2 such that ((X′′′, (e′′′0 , e
′′′
1)), e

′′′
2) ∈

X; and (2) whenever ei ∈ Xi, there exists ((X′′, (e′′0 , e
′′
1)), e

′′
2)) ∈ X such that

ei ∈ {e′′0 , e
′′
1 , e

′′
2 }.

For i ∈ {0, 1, 2}, since fi is an isomorphism, f−1i (Xi) ∈ cause(ei), meaning if we
set Y ′ = {(f−11 (e′′1), f

−1
2 (e′′2)) ∣ ((X

′′, (e′′0 , e
′′
1)), e

′′
2)) ∈ X and e′′1 ∈ X1 or e′′2 ∈

X2} and Y = {(f−10 (e′′0), (Y
′′, (f−11 (e′′1), f

−1
2 (e′′2)))) ∣ ∃X

′′.((X′′, (e′′0 , e
′′
1)), e

′′
2) ∈

X and (Y ′′, (f−11 (e′′1), f
−1
2 (e′′2))) ∈ Y ′}, we have e = (Y , (e0, (Y ′, (e1, e2)))) ∈ E

and f (e) = e′.
We then show that f is a morphism, meaning for e, e′ ∈ E:
– Obviously �(e) = �′(f (e)).
– If f (e) = f (e′) then either e = (e0, (e1, e2)) = e′, or e = (X, (e0, (Y , (e1, e2))))

and e = (X′, (e0, (Y ′, (e1, e2)))), and (e′′0 , (Y
′′, (e′′1 , e

′′
2))) ∈ X if and only if

there exists (e′′0 , (Y
′′′, (e′′1 , e

′′
2))) ∈ X

′. However, since Y ′′, Y ′′′ ∈ cause(e′′1 , e
′′
2),

47

either Y ′′ = Y ′′′, or there exist y′′ ∈ Y ′′ and y′′′ ∈ Y ′′′ such that y′′ ♯ 1 ∣ 2y′′′.
And in addition, there exist e′′′0 , e

′′′′
0 , Yy′′ , and Yy′′′ such that (e′′′0 , (Yy′′ , y

′′)) ∈ X
and (e′′′′0 , (Yy′′′ , y′′′)) ∈ X′. Since X and x′ must be conflict-free, X = X′.

– If X ↦′ f (e)∗, then either e∗ = (e0, (e1, e2)), e∗ = (Y , (e0, (Y ′, (e1, e2)))),
e∗ = (e0, (e1, e2)), or e∗ = (Y , (e0, (Y ′, (e1, e2)))).
If e = (e0, (e1, e2)) then there exists i ∈ 0, 1 ∣ 2 and Xi such that Xi ↦i �i(e),
and X = {e′′ ∣ �i(e′′) ∈ Xi}, meaning if i = 0, then {e′′ ∣ �0(e′′) ∈ Xi} ↦01
(e0, e1) and therefore {e′′ ∣ �0(�0∣1(e′′)) ∈ Xi} ↦ ((e0, e1), e2), and obviously
f ({e′′ ∣ �0(�0∣1(e′′)) ∈ Xi}) = X. If i = 1 ∣ 2 then there exists j ∈ 1, 2
and Xj such that Xj ↦j �j(e), and X = {e′′ ∣ �j(�1∣2(e′′)) ∈ Xj}, and by
similar logic if j = 1 then {e′′ ∣ �1(�0∣1(e′′)) ∈ Xj} ↦ ((e0, e1), e2), and
f ({e′′ ∣ �1(�0∣1(e′′)) ∈ Xj}) = X and if j = 2 then {e′′ ∣ �2(e′′) ∈ Xj} ↦
((e0, e1), e2), and f ({e′′ ∣ �2(e′′) ∈ Xj}) = X.
If e = (Y , (e0, (Y ′, (e1, e2)))) and f (e) = (Z, ((Z′, (f0(e0), f1(e1))), f2(e2)))
then there exists e′ = ((Z′′, (e′0, e

′
1)), e

′
2) ∈ Z such that X = {(X′, e′) ∣ X′ ⊆

Z}. This means there exists Y ′′, e′′0 , e
′′
1 , e

′′
2 such that f0(e′′0) = e

′
0, f1(e

′′
1) = e

′
1,

f2(e′′2) = e
′
2, and (e

′′
0 , (Y

′′, (e′′1 , e
′′
2))) ∈ Y . Additionally, either (Z

′′, (e′0, e
′
1)) ∈

cause((Z′, (f0(e0), f1(e1))) or e′2 ∈ cause(e2). And if (Z′′, (e′0, e
′
1)) ∈ cause((Z′,

(f0(e0), f1(e1))) then either {e′′′0 ∣ (e′′′0 , e
′′′
1) ∈ Z′} ∈ cause(f0(e0)) or {e′′′1 ∣

(e′′′0 , e
′′′
1) ∈ Z

′} ∈ cause(f1(e1))We therefore get {(Y ′′′, (e′′0 , (Y
′′, (e′′1 , e

′′
2)))) ∣

Y ′′′ ⊆ Y } ↦ e, and f ({(Y ′′′, (e′′0 , (Y
′′, (e′′1 , e

′′
2)))) ∣ Y

′′′ ⊆ Y }) = X.
If e∗ = (e0, (e1, e2)), or e∗ = (Y , (e0, (Y ′, (e1, e2)))), the cases are similar to the
previous two.

We can use similar logic to argue that f−1 is a morphism.
P = P ′ ∣ 0: Then there exists and ′ such that⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

,⦃P⦄ = ⟨ , Init, k⟩,
and is composed of ′ and the empty LREBES, 0 as described in the parallel
composition rule.

We define f (e) =
{

e′ if e = (X, (e′, ∗))
e′ if e = (e′, ∗)

And show that f ∶ → ′ is a morphism, meaning for all e0, e1 ∈ E:
– Clearly �(e0) = �′(f (e0)).
– If f (e0) = f (e1) then there exists e such that either e0 = (e, ∗) = e1 or there

exist X0 and X1 such that e0 = (X0(e, ∗)) and e1 = (X1(e, ∗)). However, by
Lemma E.7, we know that whenever X′

0 ↦ e, X′
0 contains exactly one event,

e′0. Since that event cannot synchronise with anything from E0, e′0 must be in
every possible cause of e, and similarly for the causes of e′′0 , meaning e can only
have one cause in ′||0, and therefore e0 = e1.

– For X′ ⊆ E′, if X′ ↦′ f (e0)∗ then f (e0) = e′0 and either e0 = (e′0, ∗) or
e0 = (X0, (e′0, ∗)).
If e∗0 = (e

′
0, ∗), then {e ∣ ∃e

′ ∈ X′.e = (X, (e′, ∗)) or e = (e′, ∗)} ↦ e0. Clearly
{e ∣ ∃e′ ∈ X′.e = (X, (e′, ∗)) or e = (e′, ∗)} = {e ∣ f (e) ∈ X′}
If e∗0 = (X0, (e′0, ∗)) then by Lemma E.7 there exists e such that X′ = {e}.
Clearly this requires that (e, ∗) ∈ X0, which means {(X′

0, (e, ∗)) ∣ X
′
0 ⊆ X0}↦

e0, and clearly f ({(X′
0, (e, ∗)) ∣ X

′
0 ⊆ X0}) = {e}.

48

If e∗0 = (e
′
0, ∗) then {e ∣ e = (X, (e

′, ∗)) or e = (′, ∗) for e′ ∈ X′}↦ e∗0.
If e∗0 = (X0, (e′0, ∗)) then

⋃

{X′′ ∣ ∃X′′′ ∈ E′.X′′′ ↦′ e′0 or ∃(e
′, ∗) ∈

X0.X′′ ↦′ e′, and e′′ ∈ X′′ iff f (e′′) ∈ X′′′} ↦ e∗0, by Lemmas E.9 and
E.10, we know that for all e ∈ X0, if X′′ ↦ e, then X′′ ⊆ X′, meaning
X′ =

⋃

{X′′ ∣ ∃X′′′ ∈ E′.X′′′ ↦′ e′0 or ∃(e
′, ∗) ∈ X0.X′′ ↦′ e′, and e′′ ∈

X′′ iff f (e′′) ∈ X′′′}.
– If f (e0) ⊳ f (e1)∗ then by definition, e0 ⊳ e1 ∗.

We then prove f is bijective: We already showed above, that f is injective, and it is
clear that it is also surjective.
In order to show f is an isomorphism, we therefore only need to show that f−1 is a
morphism, meaning for e′0, e

′
1 ∈ E

′:
– Again, clearly �(f−1(e′0)) = �

′(e′0).
– If f−1(e′0) = f

−1(e′1) then we already know f is a bijection, so e′0 = e
′
1.

– For X ⊆ E, if X ↦ f−1(e′0)
∗ then f−1(e′0) = e0 and either e0 = (e′0, ∗) or

e0 = (X0, (e′0, ∗)).
If e∗0 = (e

′
0, ∗), then {e ∣ (e, ∗) ∈ X or ∃X′.(X′, (e, ∗)) ∈ X}↦ e′0.

If e∗0 = (X0, (e′0, ∗)) then by Lemma E.7 we know there exists an e such that
X = {e}. Thismeans there existsX′ such that e = (X′, (e′, ∗)) and (e′, ∗) ∈ X0,
meaning {e′}↦′ e′0.
If e∗0 = (e

′
0, ∗) then eitherX = {e0}, and obviously {e′0} ↦ e′0, or there exists an

X′ such that X′ ↦ e0 and X = {e ∣ ∃e′ ∈ X′.e = (e′, ∗) or e = (X′′, (e′, ∗))}.
If e∗0 = (X0, (e′0, ∗)) then either X = {e0}, and obviously {e′0} ↦ e′0, or X =
⋃

{X′′ ∣ f (X′′) ↦′ e′0 or ∃(e
′, ∗) ∈ X0.f (X′′) ↦′ e′}. Clearly any of these

X′′s can be used to fulfil the condition.
– If f−1(e′0) ⊳ f−1(e′1)

∗ then either (1) e′0 ⊳ e′∗1 , (2) e
′
0 = e′1 and f−1(e′0) ≠

f−1(e′1)
∗, (3) e′∗1 = e′1, f

−1(e′0) ≠ f−1(e′1)
∗, and f−1(e′0) ∈ X ↦ f−1(e′1), or

(4) e′∗1 = e
′
1 and there exist 0 and 1 such that �(f

−1(e′0)) ∈ {roll 0, roll bound}
and �(f−1(e1)) ∈ {roll 1, roll bound}.
In case 1, the condition is trivially fulfilled. Case 2 will never occur. In case 3,
as shown above, e′0 ∈ f (X) ↦ e′1, and by Lemma E.8, this means e′0 ⊳ e

′
1. In

case 4, since the e′0 and e
′
1 must both have been caused by a roll at the end of

a subprocess, they were either in parallel or different option in a choice, and in
either case clearly e′0 ⊳

′ e′1.
And obviously from Lemma E.6 and the definition of Init, we see that f (Init) = Init′

and f◦k′ = k.
P = X + Y and P ′ = Y +X: Selection works the same in roll-CCSK as in CCSK, so

this case is the same as in Proposition 4.9.
P = (X + Y) +Z and P ′ = (X + Y) +Z: Selection works the same in roll-CCSK as

in CCSK, so this case is the same as in Proposition 4.9.
P = P ′ + 0: Selection works the same in roll-CCSK as in CCSK, so this case is the

same as in Proposition 4.9.

49

P = Q ⧵ A, P ′ = Q′ ⧵ A, and Q ≡ Q′: Then ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩

, and ⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩

, there exist an isomorphism fQ ∶ Q → Q′ such that fQ(InitQ) =
InitQ′ and for all e ∈ InitQ, kQ(e) = kQ′ (fQ(e)), and
⟨ , Init, k⟩ =

⟨

Q ↾ �(A ∪ A), InitQ ∩ �(A ∪ A), kQ ↾ �(A ∪ A)
⟩

and
⟨

 ′, Init′, k′
⟩

=
⟨

Q′ ↾ �(A ∪ A), InitQ′ ∩ �(A ∪ A), kQ′ ↾ �(A ∪ A)
⟩

.

We now show that e ∈ �(A ∪ A) if and only if f (e) ∈ �(A ∪ A).
For any e ∈ EQ, obviously �Q(e) ∈ A∪A iff �Q′ (f (e)) ∈ A∪A. We show that for
any X ⊆ EQ, X ∈ causes(e) if and only if f (X) ∈ cause(f (e)) by induction in the
size of X.
IfX = ∅ then there does not exist x ⊆ EQ such that x↦Q e, and by definition of an
morphism, there cannot exist x′ ⊆ EQ′ such that x′ ↦ f (e), meaning ∅ ∈ cause(e).
And since f is an isomorphism the same argument can be used for f−1.
IfX contains n events, and for all events e′ andX′ ∈ cause(e′) such thatX′ contains
less that n events,X′ ⊆ �(A∪A) if and only if f (X′) ∈ cause(f (e′)) then whenever
x′ ↦Q′ f (e), there exists x ⊆ EQ such that x ↦Q e and f (x) ⊆ x′, meaning there
exists e′′ such that x ∩ X = {e′′}, and x′ ∩ f (X) ⊇ {f (e′′)}. And by induction if
X′′ ↦ e′′ ∈ X then X′′ ⊂ X and therefore f (X′′) ∈ causes(e′′). And since X
is conflict-free, obviously f (X) is conflict free. And since f is an isomorphism the
same argument can be used for f−1.

P = A
⟨

b̃, �̃
⟩

and P ′ = (� �̃)PA{b̃,�̃∕ã,̃} where A ⟨ã, ̃⟩ = PA: Obvious
P ≡� P ′ Obvious.
All the structural induction on bound tags cases follow naturally from induction.

E.9 Proof of Theorem 7.5

Proof. We first prove that if there exists a P ′ and transition P
� [m]
←←←←←←←←←←←←←←←←←←←←←→ P ′ then there

exists an isomorphism f ∶ → ′ and a transition Init
{e}
←←←←←←←←←←←←←→ X such that �(e) = �,

f◦k′ = k[e ↦ m], and f (X) = Init′. We prove this by induction on the transition
P

�[m]
←←←←←←←←←←←←←←←←←←→ P ′:

– Suppose P = � .Q, P ′ = � [m].Q, � = �, and std(Q). Then there exist Q and
e� such that ⦃Q⦄ =

⟨

(EQ, FQ,↦Q,⊳Q, �Q,ActQ), Init, k
⟩

and ⟨ , Init, k⟩ is con-
structed based on this as described in the prefix rule.
And there exist Q′ and e′� such that⦃Q⦄l =

⟨

(EQ′ , FQ′ ,↦Q′ ,⊳Q′ , �Q′ ,ActQ′), InitQ′ , kQ′
⟩

and
⟨

 ′, Init′, k′
⟩

is constructed from this a described in the past prefix rule.
By induction, there must exist an isomorphism fQ ∶ Q → Q′ , and we define
f = fQ[e� ↦ e′�], which is clearly an isomorphism.
Since std(Q), ,meaning Init = ∅, and since no X exists such that X ↦ e� , Init

e�
←←←←←←←←←←→

{e�}, and the rest of the conditions are obviously satisfied.
– Suppose that P = � [n].Q, P ′ = � [n].Q′, Q

�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and n ≠ m.

Then there exist Q and e� such that⦃Q⦄ =
⟨

(EQ, FQ,↦Q,⊳Q, �Q,ActQ), InitQ, kQ
⟩

l
Then there exist Q and e� such that⦃Q⦄ =

⟨

(EQ, FQ,↦Q,⊳Q, �Q,ActQ), InitQ, kQ
⟩

and ⟨ , Init, k⟩ is constructed based on this as described in the past prefix rule.

50

And there exist Q′ and e′� such that⦃Q⦄l =
⟨

(EQ′ , FQ′ ,↦Q′ ,⊳Q′ , �Q′ ,ActQ′), InitQ′ , kQ′
⟩

and
⟨

 ′, Init′, k′
⟩

is constructed from this a described in the past prefix rule.

By induction, we get an isomorphism fQ ∶ Q → Q′ and a transition InitQ
{e}
←←←←←←←←←←←←←→

XQ in Cer(Q) such that �Q(e) = �, kQ′ (fQ(e)) = m, and fQ(XQ) = InitQ′ .
We define f = fQ[e� ↦ e′�]. Since InitQ and XQ are conflict-free in Q, InitQ ∪

{e�} = Init andXQ∪{e�} = X are configurations ofCer(), and clearly Init
{e}
←←←←←←←←←←←←←→ X.

– Suppose P = P0 ∣ P1, P ′ = P ′0 ∣ P1, P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′0 , and fsh[m](P1). Then there exist

0 and 1 such that for i ∈ {0, 1}, ⦃Pi⦄ = ⟨(Ei, Fi,↦i,⊳i, �i,Acti), Initi, ki⟩, and
⟨ , Init, k⟩ is constructed as described in the parallel composition rule.
And there exist 0′ and 1′ such that⦃P0′⦄ = ⟨(E0′ , F0′ ,↦0′ ,⊳0′ , �0′ ,Act0′), Init0′ , k0′⟩,
⦃P1⦄ = ⟨(E1′ , F1′ ,↦1′ ,⊳1′ , �1′ ,Act1′), Init1′ , k1′⟩, and

⟨

 ′, Init′, k′
⟩

is constructed
as described in the parallel composition rule.
We have isomorphisms f0 ∶ 0 → 0′ and f1 ∶ 1 → 1′ , and there exists a

transition Init0
e�
←←←←←←←←←←→ X in Cer(0) such that �0(e�) = �, k0′ (f0(e)) = m and f0(X) =

Init0′ .

We define a helper function f ′(e) =
⎧

⎪

⎨

⎪

⎩

(f0(e0), ∗) if e = (e0, ∗)
(∗, f1(e1)) if e = (∗, e1)
(f0(e0), f1(e1)) if e = (e0, e1)

and our iso-

morphism as: f (e) =
{(f ′(X), f ′(e′)) if e = (X, e′)
f ′(e) otherwise

.

It is clear that f◦f−1 = I and f−1◦f = I ′
We show that f ∶ → ′ is a morphism, meaning for all e, e′ ∈ E:
∙ Obviously �(e) = �′(f (e))
∙ If f (e) = f (e′) then since f0 and f1 are injective, e = e′.
∙ For X′ ⊆ E′, if X′ ↦′ f (e)∗ then either e∗ = (Y , e× and there exists e×′ ∈
f (Y) such that X′ = {(Y ′, e×′) ∣ Y ′ ⊆ f ′(Y)}, or e∗ ∈ E× and there exists X′′

such that X′′ ↦′
× f (e) and X

′ = {e′ ∣ (�′0(e
′), �′1(e

′)) ∈ X′′}, or e∗ = (Y , e×)
and X′ = {f (e)}, or e∗ = (Y , e×) and

X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ E′i .X
′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y).X′
i ↦

′
i �

′
i (e×′)

, and e′′ ∈ X′′ iff �′i (e
′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

or e∗ ∈ E× and there exists X′′ such that X′′ ↦′
× f (e) and X′ = {e′ ∣

(�′0(e
′), �′1(e

′)) ∈ X′′}.
If e∗ = (Y , e× and there exists e×′ ∈ f (Y) such that X′ = {(Y ′, e×′) ∣ Y ′ ⊆
f (Y)} then there exists an e′times ∈ Y such that f (e′×) = e×′ and clearly
{(Y ′, e′×) ∣ Y

′ ⊆ Y }↦ (Y , e×).
If e∗ ∈ E× and there exists X′′ such that X′′ ↦′

× f (e) and X′ = {e′ ∣
(�′0(e

′), �′1(e
′)) ∈ X′′} then by induction and since || is an REBES product,

there exists X′′′ ⊆ E× such that X′′′ ↦× e, f (X′′′) ⊆ X′′, and if e′ ∈ X′′′

then f (e′) ≠ ⊥. This means {e′ ∣ (�0(e′), �1(e′)) ∈ X′′′} ↦ e.

51

If e∗ = (Y , e×) and X′ = {f (e)}, or e∗ = (Y , e×) and

X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, X′
i ∈ E

′
i .X

′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y).X′
i ↦

′
i �

′
i (e×′)

, and e′′ ∈ X′′ iff �′i (e
′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

then by induction, since

f−1 is a morphism for eachXi ↦i �i(e), f (Xi) ⊂ X′
i ↦

′
i �

′
i (f (e)), and for each

Xi ↦i �i(e′×) ∈ Y , f (Xi) ⊂ X′
i ↦

′
i �

′
i (f (e

′
×)) meaning

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e′× ∈ Y .Xi ↦i �i(e′×)
, and e′′ ∈ X′′ iff �′i (e

′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

⊆

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ E′i .X
′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y).X′
i ↦

′
i �

′
i (e×′)

, and e′′ ∈ X′′ iff �′i (e
′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

.

If e∗ ∈ E× and there exists X′′ such that X′′ ↦′
× f (e) and X′ = {e′ ∣

(�′0(e
′), �′1(e

′)) ∈ X′′} then by induction and because || is an REBES prod-
uct, there existsX′′′ ⊆ E× such that f (X′′′) ⊆ X′′ andX′′′ ↦× e. This means
{e′ ∣ (�0(e′), �1(e′)) ∈ X′′′}↦ e.

∙ If f (e)⊳′f (e′)∗ then there exists i ∈ {0, 1} such that either�′i (f (e))⊳
′
i�
′
i (f (e

′))∗,
or �′i (f (e)) = �′i (f (e

′)) ≠ ⊥, and f (e) ≠ f (e′), or f (e′)∗ = f (e′), f (e) ≠
f (e′), and f (e) ∈ X ↦′ f (e′), or f (e′)∗ = f (e′) and there exist , ′ such that
�′(f (e)) ∈ {roll , roll bound} and �′(f (e′)) ∈ {roll ′, roll bound}.
If �′i (f (e)) ⊳

′
i �

′
i (f (e

′))∗ then by induction �i(e) ⊳i �i(e′)∗, meaning e∗ ⊳ e.
If �′i (f (e)) = �′i (f (e

′)) ≠ ⊥, and f (e) ≠ f (e′) then �i(e) = �i(e′) ≠ ⊥ and
e ≠ e′, meaning e ⊳ e′∗.
If f (e′)∗ = f (e′), f (e) ≠ f (e′), and f (e) ∈ X ↦′ f (e′) then, since, by similar
arguments to the previous case, f−1(X)↦ f (e′), and e ∈ f−1(X), e ⊳ e∗.
If f (e′)∗ = f (e′) and there exist , ′ such that �′(f (e)) ∈ {roll , roll bound}
and �′(f (e′)) ∈ {roll ′, roll bound}, then �(e) ∈ {roll , roll bound} and �(e′) ∈
{roll ′, roll bound}, meaning e ⊳ e′∗.

By similar arguments, f−1 is a morphism too.
We now show that there exists an event (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈

Y } ⊆ Init. Since Init0
{e�}
←←←←←←←←←←←←←←←←←←→, for every X0 ↦0 e�, X0 ∩ Init0 = X0 = {e0}, and if

X′
0 ↦0 e0 then by Lemma E.6, X′

0 ↦0 e�, and therefore X′
0 ∩ Init0 ≠ ∅. Therefore

there must exist one (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init.

We use this (Y , (e�, ∗)) as our e and show that Init
{e}
←←←←←←←←←←←←←→: Since Y ⊆ Init, for every

X ↦ e, X ∩ Init ≠ ∅. And if e′ ⊳ e then it must that either �0(e′) ⊳0 e�, in which
case �0(e′) ∉ Init0, and therefore e′ ∉ Init, or �0(e′) = e� and e ≠ e′, in which

case, since Init0
{e�}
←←←←←←←←←←←←←←←←←←→, e′ ∉ Init0, and therefore e′ ∉ Init, or e′ ∈ X ↦ e and e′ ≠ e,

in which case �0(e′) ∈ X0 ↦ e� or �0(e′) ∈ X0 ↦ �0(e′′) for e′′ ∈ Y , and by
Lemmas E.8 and E.10, �0(e′) ⊳ e�, meaning �0(e′) ∉ Init0, and e′ ∉ I .

We therefore have Init
{e}
←←←←←←←←←←←←←→ I ∪ {e}, and obviously �(e) = �0(e�) = � and f◦k′ =

k[e ↦ m], and since f0(Init0 ∪ {e�}) = Init′0 and f1(Init1) = Init′1, and there only
exists one (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init, f (Init ∪
{e}) = Init′.

52

– Suppose P = P0 ∣ P1, P ′ = P ′0 ∣ P
′
1 , P0

�[m]
←←←←←←←←←←←←←←←←←→ P ′0 , P1

�[m]
←←←←←←←←←←←←←←←←←→ P ′1 , and � = �.

Then the construction of ⟨ , Init, k⟩ and
⟨

 ′, Init′, k′
⟩

and the isomorphisms is

similar to the previous case. And by induction we have transitions Init0
{e0}
←←←←←←←←←←←←←←←←←→ and

Init1
{e1}
←←←←←←←←←←←←←←←←←→ fulfilling the conditions.

For similar reasons to the previous case there exists exactly one (Y , (e0, e1) such that
{e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init, and we use this (Y , (e0, e1)) as e, and the rest of
the proof follows similarly.

– Suppose P = P0 + P1, P ′ = P ′0 + P1, P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′0 , and std(P1). Then the rule for

selection is the same in roll-CCSK as in CCSK, and the case is therefore identical
to Theorem 4.10.

– Suppose P = Q ⧵A, P ′ = Q′ ⧵A,Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and � ∉ A∪A. Then there exist Q

and ′Q such that ⦃Q⦄ =
⟨

Q, InitQ, k
⟩

, ⦃Q′⦄ =
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

, and and ′

are constructed from Q and ′Q as described in the restriction rule, and there exists

an isomorphism fQ ∶ Q → ′Q and a transition InitQ
{eQ}
←←←←←←←←←←←←←←←←←←←→ where �Q(eQ) = �,

fQ◦k′Q = kQ[eq ↦ m], and fQ(InitQ ∪ {eQ}) = Init′Q.
Since there exists a standard process P ′′ such that P ′′ →∗ P , there cannot exist
e′ ∈ Init such that �(e′) ∈ A ∪ A or for all x ∈ cause(e′), there exists e′′ ∈ x such
that �(e′′) ∈ A ∪ A, meaning Init ∩ �(A ∪ A) = Init, and, since eQ ∈ �(A ∪ A),

Init
eQ
←←←←←←←←←←←→.

– Suppose P = Q[f], P ′ = Q′[f], Q
�[m]
←←←←←←←←←←←←←←←←←→ Q′, and f ′(�) = �. Then the rule for

functions is the same in roll-CCSK as in CCSK, and the case is therefore identical
to Theorem 4.10.

– Suppose P = (�)Q, P ′ = (�)Q′, and Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then there exist �Q and ActQ

such that ⦃Q⦄ =
⟨

(E, F ,↦,⊳, �Q,ActQ), Init, k
⟩

and ⟨ , Init, k⟩ is constructed
based on this as described in the tag binding rule. And there exist �Q′ and ActQ′
such that ⦃Q′⦄ =

⟨

(E′, F ′,↦′,⊳′, �Q′ ,ActQ′), Init′, k′
⟩

and
⟨

 ′, Init′, k′
⟩

is con-
structed based on this as described in the tag binding rule.
And there exists an isomorphisms fQ ∶ (E, F ,↦,⊳, �Q,ActQ) → (E′, F ′,↦′

,⊳′, �Q′ ,ActQ′) and a transition Init
e
←←←←←→ X in Cer((E, F ,↦,⊳, �Q,ActQ)) such that

�Q(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′. Clearly this all still holds for
and ′.

– Suppose P ≡ Q, P ′ ≡ Q′, and Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then the result follows from induction

and Proposition 7.4.

We then prove that if there exists a transition Init
{e}
←←←←←←←←←←←←←→ X then there exists a P ′ and a

transition P
� [m]
←←←←←←←←←←←←←←←←←←←←←→ P ′ and an isomorphism f ∶ → ′ such that �(e) = �, f◦k′ =

k[e↦ m], and f (X) = Init′. We prove this by induction on P .

– Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr().
– Suppose P = roll . Then there does not exist e ∈ E such that �(e) = �.

53

– Suppose P = rolling . Then there does not exist e ∈ E such that �(e) = �.
– Suppose P = � .P ′′. Then {e�} ↦ e′ for all e′ ∈ E ⧵ {e�} such that �(e) = �,

meaning by definition e = e� . In addition, by Lemma E.5, whenever e′ ∈ Init,

�(e′) ∈ {roll ′, start roll ′, roll bound}meaning std(P). This means we get P
�[m]
←←←←←←←←←←←←←←←←←→

�[m].P ′′ for some freshm, and the isomorphisms are similar to this case in the proof
of Theorem 4.10.

– Suppose P = �[n].P ′′ and ⦃P ′′⦄ =
⟨

 ′′, Init′′, k′′
⟩

. Then e� ∈ Init, and clearly

Init′′
e
←←←←←→ X′′, meaning there exists a key m and a transition P ′′

�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′′′, such

that ⦃P ′′′⦄ =
⟨

 ′′′, Init′′′, k′′′
⟩

and there exists an isomorphism f ′′ ∶ ′′ →

 ′′′ such that k′′′(f ′′(e)) = m and f ′′(X′′) = Init′′′. If m ≠ n, then P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→

�[m].P ′′′. Otherwise, we can chose a fresh m and still get a transition. We define
our isomorphism as f = f ′′[e� ↦ e′�] and the rest of the proof is straightforward.

– Suppose P = P0 + P1. Then the proof is similar to the same case in CCSK, as the
choice semantics are the same.

– Suppose P = P0 ∣ P1, ⦃P0⦄ = ⟨0, Init0, k0⟩, Cbr(0) = (E0, F0,C0,→0), ⦃P1⦄ =
⟨1, Init1, k1⟩, and Cbr(1) = (E1, F1,C1,→1). Then either e = (Y , (e0, ∗)), e =
(Y , (∗, e1)), or e = (Y , (e0, e1)).
If e = (Y , (e0, ∗)), then whenever X′

0 ↦0 e0, there exists e′ ∈ Y such that �0(e′) ∈
X0 and {e′} ↦ e. And whenever �0(e′) ⊳0 �0(e), we get e′ ⊳ e. This means Init0 is
conflict-free, �0(X) is conflict-free, and Init0

e0
←←←←←←←←←→0 �0(X). There therefore exists a

key m and a transition P0
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , such that

⦃

P ′0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and there
exists an isomorphism f0 ∶ 0 → ′0 such that k′0(f0(e0)) = m and f0(�0(X)) =
Init′0.

We chose an m, which is fresh for P1, and we get P
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P1. We define

our isomorphisms similarly to the corresponding case in the first part of the proof,
and the proof of them being isomorphisms is similar.
If e = (Y , (∗, e1)), the argument is similar.
If e = (Y , (e0, e1)), then for i ∈ {0, 1}, whenever X′

i ↦i ei, there exists e′ ∈
Y such that �i(e′) ∈ X′

i and {e
′} ↦ e. And whenever �i(e′) ♯i �i(e), we get

e′ ♯ e. This means Initi is conflict-free, �i(X) is conflict-free, and Initi
e0
←←←←←←←←←→i �i(X).

There therefore exists a key mi and a transition Pi
�i(ei)[mi]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′i , such that

⦃

P ′i
⦄

=
⟨

 ′i , Init
′
i, k

′
i
⟩

and there exists an isomorphism fi ∶ i → ′i such that k′i(fi(ei)) =
mi and fi(�i(X)) = Init′i.
We say that m0 = m1 is a fresh m, and then since �0(e0) = �1(e1) and �(e) = �, we

get P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P

′
1 . We define our isomorphism similarly to the corresponding

case in the first part of the proof, and the proof of them being isomorphism is similar
to that case. The rest of the case is straightforward.

– Suppose P = P ′′ ⧵ A, ⦃P ′′⦄ = ⟨ ′′, Init, k⟩, and Cbr(′′) = (E′′, F ′′,C′′,→′′).
Then �(e) ∉ A ∪ A and there exists at least one Y ∈ cause(e) such that if e′ ∈ Y
then �(e′) ∉ (A ∪ A). And since P is reachable, for all e′ ∈ Init, �(e′) ∉ (A ∪
A). We therefore know Init′′ = Init

e
←←←←←→
′′
X, meaning there exists a key n and a

54

transition P ′′
�′′(e)
←←←←←←←←←←←←←←←←←←←←→ P ′′′ such that ⦃P ′′′⦄ =

⟨

 ′′′, Init′′′, k′′′
⟩

, and there exists an
isomorphism f ′ ∶ ′′ → ′′′ such that f ′◦k′′′ = [e↦ n] and f ′(X) = Init′′′.

This means P
�′′(e)
←←←←←←←←←←←←←←←←←←←←→ P ′′′ ⧵A and the isomorphism f ↾ E clearly fulfils the remain-

ing conditions.
– Suppose P = P ′′[f], ⦃P ′′⦄ = ⟨ ′′, Init, k⟩. Then the case is similar to the corre-
sponding case of Theorem 4.10.

E.10 Lemma E.11

Lemma E.11. Let P be a roll-CCSK process. If ⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩
where e, e′ ∈ E, e ≠ e′, and there exist , ′ such that �(e) ∈ {roll , bound roll} and
�(e′) ∈ {roll ′, bound roll}, then e ⊳ e′.

Proof. It is obvious from the syntax that e and e′ come from parallel subprocesses, and
the result follows from the parallel composition rule.

E.11 Lemma E.12

Lemma E.12. Let P be a roll-CCSK process. If ⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩
and e ∈ E where �(e) ∉ {roll , bound roll}. Then whenever X ↦ e, either X = {e} or
for all e′ ∈ X, �(e′) ∉ {roll , bound roll}.

Proof. Obvious in most cases. In parallel composition we use the fact that we never have
e′′ ∈ X′′ ↦ e′′′ where �(e′′) ∈ {roll , bound roll}.

E.12 Lemma E.13

Lemma E.13. Let P be a roll-CCSK process. If ⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩
and e, e′ ∈ Init then e′ ⊳ e if and only if there exist , ′ such that ≤P ′, either �(e) =
start roll or �(e) [k(e)] occurs in P , and either �(e′) = start roll ′ or �(e′)′ [k(e′)]
occurs in P .

Proof. We prove this by induction on P .

– It is trivial in all cases except P = �′′ [n].P ′ and P = P0 ∣ P1.
– Suppose P = �′′ [n].P ′. Then if e′ ⊳ e either e = e� or the result follows from
induction and the fact that e ∈ Init means �(e) ∉ {roll ′′, roll bound}. If e = e�
then e′ ⊳ e unless �(e′) = start roll ′ for some ′ ≱P .
And if there exist , ′ such that ≤P ′, either �(e) = start roll or �(e) [k(e)]
occurs in P , and either �(e′) = start roll ′ or �(e′)′ [k(e′)] occurs in P then either
e = e� or the result follows from induction. And if e = e� , then {e ∣ �P (e) ∈
{roll ′, roll bound}∪{start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P }}×{e�} ⊆ ⊳.

– Suppose P = P0 ∣ P1. Then there exists i ∈ {0, 1} such that either �i(e′) ⊳i �i(e)
or �i(e′) = �i(e). If �i(e′) ⊳i �i(e) then the result follows from induction, and if
�i(e′) = �i(e) then that contradicts e, e′ ∈ Init.

55

E.13 Proof of Theorem 7.7

Proof. We first prove that if there exists a P ′ and a transition P
�
P ′ then there ex-

ists an isomorphism f ∶ → ′ and events er and e0, e1,… en such that Init
{er}
←←←←←←←←←←←←←←←←→

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, �(er) = �, {e0, e1,… en} = {e ∣ ∃ ′. ≤P

 ′ and either �(e)′ [k(e)] occurs in P or �(e) = start roll ′ and rolling ′ occurs in P },
f◦k′ = k ↾ {e ∣ f (e) ∈ Init′}, and f (Xdone) = Init′.

We prove this through induction on the derivation of P
roll

P ′, first if � = roll :

(ROLL): Suppose P = rolling and P ′ = roll . Then E = {er, et} and E′ =
{e′r, e

′
t} with the rest of and ′ as defined in the semantics, and Init = {et}

and Init′ = ∅, and obviously Init
{er}
←←←←←←←←←←←←←←←←→ {er, et}

{et}
←←←←←←←←←←←←←←←←→ {er}

{er}
←←←←←←←←←←←←←←←←→ ∅, and we define

f (e) =
{

e′r if e = er
e′t if e = et

, which fulfils the conditions

(act ROLL): Suppose P = � [m].R, P ′ = � .R {′∣≤P ′}, R
roll

R′, ⦃R⦄ =

⟨R, InitR, kR⟩, and
⦃

R {′∣≤P ′}
⦄

= ⟨R′ , InitR′ , kR′⟩. Then { ′ ∣ ≤P ′}
is and all ′s for which some �′ or �′ [n] occurs in P . It is clear from the seman-
tic rules that this means Init′ = {e ∣ �(e) ∈ {start roll ′ ∣ rolling ′ occurs in P and
∄�, n.�′ or �′ [m] occurs in P } and there exists an isomorphism f ∶ → ′.

In addition, by induction we have InitR
{er}
←←←←←←←←←←←←←←←←→ X0R

{e0}
←←←←←←←←←←←←←←←←←→ X1R…

{em}
←←←←←←←←←←←←←←←←←←→ Xm+1R

{er}
←←←←←←←←←←←←←←←←→

XdoneR , �({e0, e1,… , em}) = {�′ [m] ∣ ≤R ′ and � [m]′ occurs in R}∪{start roll ′ ∣
 ≤R ′ and rolling ′ occurs in R} and f (XdoneR) = InitR′ . Since Init = InitR ∪

{e�}, and no new preventions are added to er, we get Init
{er}
←←←←←←←←←←←←←←←←→, and for all e ∈ E such

that �(e) ∉ {roll ′, roll bound} ∪ {start roll ′ ∣ ∄�, n.�′ or �′ [n] occurs in � .P },

whenever X ↦ e, we have er ∈ X, meaning, Init
{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→

Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, �(er) = roll , �({e0, e1,… , en}) = {�′ [m] ∣ ≤P ′ and � [m]′ occurs in P }∪

{start roll ′ ∣ ≤P ′ and rolling ′ occurs in P } = Init ⧵ {er}.

(par ROLL): Suppose P = Q ∣ R, P ′ = (Q ∣ R) {′∣≤P ′}, Q
roll

Q′, ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩

,⦃R⦄ = ⟨R, InitR, kR⟩, ⟨ , Init, k⟩ is constructed from
⟨

Q, InitQ, kQ
⟩

and ⟨R, InitR, kR⟩ as described in the semantics,
⦃

Q {′∣≤P ′}
⦄

=
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

,
⦃

R {′∣≤P ′}
⦄

=
⟨

 ′R, Init
′
R, k

′
R
⟩

, and
⟨

 ′, Init′, k′
⟩

is constructed from
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and
⟨

 ′R, Init
′
R, k

′
R
⟩

as described in the semantics.
It is clear from the semantics that there exists an isomorphism f ∶ → ′.

In addition, by induction we have InitQ
{er}
←←←←←←←←←←←←←←←←→ X0Q

{e0}
←←←←←←←←←←←←←←←←←→ X1Q…

{em}
←←←←←←←←←←←←←←←←←←→ Xm+1Q

{er}
←←←←←←←←←←←←←←←←→

XdoneQ , �({e0, e1,… , em}) = {�′ [m] ∣ ≤R ′ and � [m]′ occurs in R}∪{start roll ′ ∣
 ≤R ′ and rolling ′ occurs in R} and f (XdoneR) = InitR′ .

56

From this we get that (er, ∗) ∈ E, and for each X ↦ (er, ∗), we have an XQ ↦ er
such that X = {e ∈ E ∣ �Q(e) ∈ XQ}, and therefore X ∩ Init ≠ ∅. Addition-
ally, if e ⊳ (er, ∗), then either �Q(e) ⊳ er, or �(e) ∈ {roll ′, bound roll}, meaning

e ∉ Init. We therefore get Init
{(er,∗)}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→. Since by Lemma E.11 ∄e′ ∈ I.�(e′) =

roll ′ or bound roll, we get that by Lemma E.12 for ei, 0 ≤ i ≤ n, whenever
Xi ↦ ei, either Xi = {ei}, or er ∈ Xi, meaning for any e ∈ E such that �Q(e) ∈
{e0, e1,… en}, whenever X ↦ e, either X = {e} or (er, ∗) ∈ X. The rest follows
from Lemma E.10 and Lemma E.13.

(prop ROLL 1): SupposeP = �′ [m
′].R,P ′ = �′ [m

′].R′, ′ ≠ ,⦃R⦄ = ⟨R, InitR, kR⟩,

⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩, and R
roll

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→

{er}
←←←←←←←←←←←←←←←←→

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶

R → R′ fulfilling the conditions. Then it is clear from the semantics that the
result holds using the isomorphism f = fR[e� ↦ e′�].

(prop ROLL 2): Suppose P = �′ .R, P
′ = �′ .R

′, ⦃R⦄ = ⟨R, InitR, kR⟩, ⦃R′⦄ =

⟨R′ , InitR′ , kR′⟩, and InitR
{er}
←←←←←←←←←←←←←←←←→

{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and

there exists an isomorphism fR ∶ R → R′ such that fR(Xd) = InitR′ . Then it is
clear from the semantics that the result holds using the isomorphism f = fR[e� ↦
e′�].

(prop ROLL 3): Suppose P = P0 + P1, P ′ = P ′0 + P1, ⦃P0⦄ = ⟨0, Init0, k0⟩,

⦃P1⦄ = ⟨1, Init1, k1⟩
⦃

P ′0
⦄

= ⟨R′ , InitR′ , kR′⟩, and P0
roll

P ′0 . Then by induc-

tion Init0
{er}
←←←←←←←←←←←←←←←←→

{er0}
←←←←←←←←←←←←←←←←←←←←→ X00

{e00}

←←←←←←←←←←←←←←←←←←←←←→ X10…
{en0}

←←←←←←←←←←←←←←←←←←←←←→ Xn+10

{er0}

←←←←←←←←←←←←←←←←←←←←→ Xdone0 , and there exists
an isomorphism f0 ∶ 0 → 0′ fulfilling the conditions. Then, since P is consistent,

std(P1), and therefore {0}×Init0
{(0,er0)}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0}×X00

{(0,e00)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0}×X10…
{(0,en0)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

{0} ×Xn+10

{(0,er0)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0} ×Xdone0 , and the rest obviously holds.
(prop ROLL 4): Suppose P = R ⧵ A, P ′ = R′ ⧵ A, ⦃R⦄ = ⟨R, InitR, kR⟩, ⦃R′⦄ =

⟨R′ , InitR′ , kR′⟩, and R
roll

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→

{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→

X1…
{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶ R → R′

such that fR(Xd) = InitR′ . Then, since P is consistent, if � [m] occurs in R, � ∉
A ∪ A, and by Thoerem 7.5, whenever e ∈ InitR, there exists X ∈ cause(e) such
that X ⊆ �(A ∪ A), and the result follows.

(prop ROLL 5): Suppose P = R[f], P ′ = R′[f], ′ ≠ , ⦃R⦄ = ⟨R, InitR, kR⟩,

⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩, and R
roll

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→

{er}
←←←←←←←←←←←←←←←←→

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶

R → R′ fulfilling the conditions, and the result follows.
(prop ROLL 6): Suppose P = (� ′)R, P ′ = (� ′)R′, ′ ≠ , ⦃R⦄ = ⟨R, InitR, kR⟩,

⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩, and R
roll

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→

{er}
←←←←←←←←←←←←←←←←→

57

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶

R → R′ fulfilling the conditions, and the result follows.

If � = bound roll the proof is similar.

We then prove that if there exists events er and e0, e1,… en such that Init
{er}
←←←←←←←←←←←←←←←←→

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1…

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, then there exists a P ′ and a transition P

�
P ′

and an isomorphism f ∶ → ′ such that �(er) = �, {e0, e1,… en} = {e ∣ ∃ ′. ≤P
 ′ and either �(e)′ [k(e)] occurs in P or �(e) = start roll ′ and rolling ′ occurs in P },
f◦k′ = k ↾ {e ∣ f (e) ∈ Init′}, and f (Xdone) = Init′.

By Lemma E.12, whenever �(e) ∉ {roll , roll bound}, there exists X such that
X ↦ e, and for all e′ ∈ X, �(e′) ∉ {roll , roll bound}. Additionally, whenever �(e) ∈

{roll , roll bound}, e ∉ Init. This means if Init
{er}
←←←←←←←←←←←←←←←←→, then �(e) ∈ {roll , roll bound}.

In addition, since whenever X ↦ er we have X ∩ Init ≠ ∅, it must be that a rolling
occurs in P , such that if �(e) = bound roll then rolling is bound by some (�) and if

�(e) = roll then rolling is free, meaning we get P
�(er)

P ′. The rest follows from
Lemma E.13.

58

