
Depending on Session-Typed Processes

Bernardo Toninho and Nobuko Yoshida

Imperial College London, United Kingdom

Abstract. This work proposes a dependent type theory that combines
functions and session-typed processes (with value dependencies) through
a contextual monad, internalising typed processes in a dependently-typed
λ-calculus. The proposed framework, by allowing session processes to
depend on functions and vice-versa, enables us to specify and statically
verify protocols where the choice of the next communication action can
depend on specific values of received data. Moreover, the type theoretic
nature of the framework endows us with the ability to internally describe
and prove predicates on process behaviours. Our main results are type
soundness of the framework, and a faithful embedding of the functional
layer of the calculus within the session-typed layer, showcasing the ex-
pressiveness of dependent session types.

1 Introduction

Session types [26,14] are a typing discipline for communication protocols, whose
simplicity provides an extensible framework that allows for integration with a va-
riety of functional type features. One useful instance arising from the proof theo-
retic exploration of logical quantification is value dependent session types [27]. In
this work, one can express properties of exchanged data in protocol specifications
separately from communication, but cannot describe protocols where communi-
cation actions depend on the actual exchanged data (e.g. [17, § 2]). Moreover,
it does not allow functions or values to depend on protocols (i.e. sessions) or
communication, thus preventing reasoning about dependent process behaviours,
exploring the proofs-as-programs paradigm of dependent type theory, e.g. [18,8].

Our work addresses the limitations of existing formulations of session types
by proposing a type theory that integrates dependent functions and session
types using a contextual monad. This monad internalises a session-typed calculus
within a dependently-typed λ-calculus. By allowing session types to depend on λ-
terms and λ-terms to depend on typed processes (using the monad), we are able
to achieve heightened degrees of expressiveness. Exploiting the former direction,
we enable writing actual data-dependent communication protocols. Exploiting
the latter, we can define and prove properties of linearly-typed objects (i.e.
processes) within our intuitionistic theory.

To informally demonstrate how our type theory goes beyond the state of the
art in order to represent data-dependent protocols, consider the following session
type (we write τ ∧A for ∃x:τ.A where x does not occur in A and similarly τ ⊃ A
for ∀x:τ.A when x is not free in A), T , Bool ⊃ ⊕{t : Nat ∧ 1, f : Bool ∧ 1},

2

representable in existing session typing systems. The type T denotes a protocol
which first, inputs a boolean and then either emits the label t, which will be
followed by an output of a natural number; or emits the label f and a boolean.
The intended protocol described by T is to take the t branch if the received value
is t and the f branch otherwise, which we can implement as Q with channel z
typed by T as follows:

Q , z(x).case x of (true⇒ z.t; z〈23〉.0, false⇒ z.f; z〈true〉.0)

where z(x).P denotes an input process, z.t is a process which selects label t
and z〈23〉.P is an output on z. However, since the specification is imprecise,
process z(x).case x of (false⇒ z.t; z〈23〉.0, true⇒ z.f; z〈true〉.0) is also a type-
correct implementation of T that does not adhere to the intended protocol. Using
our dependent type system, we can narrow the specification to guarantee that
the desired protocol is precisely enforced. Consider the following definition of a
session-type level conditional where we assume inductive definition and depen-
dent pattern matching mechanisms (stype denotes the kind of session types):

if :: Bool→ stype→ stype→ stype
if trueAB = A if falseAB = B

The type-level function above case analyses the boolean and produces its
first session type argument if the value is true and the second otherwise. We may
now specify a session type that faithfully implements the protocol:

T ′ , ∀x:Bool.ifx (Nat ∧ 1) (Bool ∧ 1)

A process R implementing such a type on channel z is given below:

R , z(x).case x of (true⇒ z〈23〉.0, false⇒ z〈true〉.0)

Note that if we flip the two branches of the case analysis in R, the session is no
longer typable with T ′, ensuring that the protocol is implemented faithfully.

The example above illustrates a simple yet useful data-dependent protocol.
When we further extend our dependent types with a process monad [31], where
{c← P ← uj ; di} is a functional term denoting a process that may be spawned
by other processes by instantiating the names in uj and di, we can provide more
powerful reasoning on processes, enabling refined specifications through the use
of type indices (i.e. type families) and an ability to internally specify and verify
predicates on process behaviours. We also show that all functional types and
terms can be faithfully embedded in the process layer using the dependently-
typed sessions and process monads.

Contributions. § 2 introduces our dependent type theory, augmenting the ex-
ample above by showing how we can reason about process behaviour using type
families and dependently-typed functions (§ 2.3). We then establish the sound-
ness of the theory (§ 2.4). § 3 develops a faithful embedding of the dependent
function space in the process layer (Theorem 3.4). § 4 concludes with related
work. This article is a long version of [34] containing omitted definitions, proofs
and additional examples.

3

Kinds K,K′ ::= type | stype | Πx:τ.K | Πt:K.K′

Functional τ, σ ::= Πx:τ.σ | λx:τ.σ | τ M | {uj :Bj ; di:Ai ` c:A} | λt :: K.τ | τ σ
Sessions A,B ::= !A | A(B | A⊗B | ∀x:τ.A | ∃x:τ.A | 1

| N{li : Ai} | ⊕{li : Ai} | λx:τ.A | A M | λt::K.A | AB
Terms M,N ::= λx:τ.M | {c← P ← uj ; di} |M N | x
Processes P,Q ::= c〈d〉.P | (νc)P | c(x).P | c〈M〉.P | !c(x).P

| c.case{li ⇒ Pi} | c.l;P | [c↔ d] | 0 | c←M ← uj ; di;Q

Fig. 1. Syntax of Kinds, Types, Terms and Processes

2 A Dependent Type Theory of Processes

This section introduces our dependent type theory combining session-typed pro-
cesses and functions. The theory is a generalisation of the line of work relat-
ing linear logic and session types [4,27,31], considering type-level functions and
dependent kinds in an intensional type theory with full mutual dependencies
between functions and processes. This generalisation enables us to express more
sophisticated session types (such as those of § 1) and also to define and prove
properties of processes expressed as type families with proofs as their inhabi-
tants. We focus on the new rules and judgements, pointing the interested reader
to [27,5,28] for additional details on the base theory.

2.1 Syntax

The calculus is stratified into two mutually dependent layers of processes and
terms, which we often refer to as the process and functional layers, respectively.
The syntax of the theory is given in Fig. 1 (we use x, y for variables ranging over
terms and t for variables ranging over types).

Types and Kinds. The process layer is able to refer to terms of the functional
layer via appropriate (dependently-typed) communication actions and through
a spawn construct, allowing for processes encapsulated as functional values to
be executed. Dually, the functional layer can refer to the process layer via a
contextual monad [31] that internalises (open) typed processes as opaque func-
tional values. This mutual dependency is also explicit in the type structure on
several axes: process channel usages are typed by a language of session types,
which specifies the communication protocols implemented on the used channels,
extended with two dependent communication operations ∀x:τ.A and ∃x:τ.A,
where τ is a functional type and A is a session type in which x may occur. More-
over, we also extend the language of session types with type-level λ-abstraction
over terms λx:τ.A and session types λt::K.A (with the corresponding elimina-
tion forms AM and AB). As we show in § 1, the combination of these features
allows for a new degree of expressiveness, enabling us to construct session types
whose structure depends on previously communicated values.

The remaining session constructs are standard, following [5]: !A denotes a
shared session of type A that may be used an arbitrary (finite) number of times;

4

A (B represents a session offering to input a session of type A to then offer
the session behaviour B; A ⊗ B is the dual operator, denoting a session that
outputs A and proceeds as B; ⊕{li : Ai} and N{li : Ai} represent internal and
external labelled choice, respectively; 1 denotes the terminated session.

The functional layer is a λ-calculus with dependent functions Πx:τ.σ, type-
level λ-abstractions over terms and types (and respective type-level applications)
and a contextual monadic type {uj :Bj ; di:Ai ` c:A}, denoting a (quoted) process
offering session c:A by using the linear sessions di:Ai and shared sessions uj :Bj
[31]. We often write {A} for {·; · ` c:A}. The kinding system for our theory con-
tains two base kinds type and stype of functional and session types, respectively.
Type-level λ-abstractions require dependent kinds Πx:τ.K and Πt::K.K ′, re-
spectively. We note that the functional connectives form a standard dependent
type theory [11,23].

Terms and Processes. Terms include the standard λ-abstractions λx:τ.M ,
applications M N and variables x. In order to internalise processes within the
functional layer we make use of a monadic process wrapper, written {c← P ←
uj ; di}. In such a construct, the channels c, uj and di are bound in P , where c is
the session channel being offered and uj and di are the session channels (linear
and shared, respectively) being used. We write {c ← P ← ε} when P does not
use any ambient channels, which we abbreviate to {P}.

The syntax of processes follows that of [5] extended with the monadic elim-
ination form c ← M ← uj ; di;Q. Such a process construct denotes a term M
that is to be evaluated to a monadic value of the form {c← P ← uj ; di} which
will then be executed in parallel with Q, sharing with it a session channel c and
using the provided channels uj and di. We write c ← M ← ε;Q when no chan-
nels are provided for the execution of M and often abbreviate this to c←M ;Q.
The process c〈d〉.P denotes the output of the fresh channel d along channel c
with continuation P , which binds d; (νc)P denotes channel hiding, restricting
the scope of c to P ; c(x).P denotes an input along c, bound to x in P ; c〈M〉.P
denotes the output of term M along c with continuation P ; !c(x).P denotes a
replicated input which spawns copies of P ; the construct c.case{li ⇒ Pi} codi-
fies a process that waits to receive some label lj along c, with continuation Pj ;
dually, c.l;P denotes a process that emits a label l along c and continues as P ;
[c↔ d] denotes a forwarder between c and d, which is operationally implemented
as renaming; P | Q denotes parallel composition and 0 the null process.

2.2 A Dependent Typing System

We now introduce our typing system, defined by a series of mutually inductive
judgements, given in Fig. 2. We use Ψ to stand for a typing context for dependent
λ-terms (i.e. assumptions of the form x:τ or t :: K, not subject to exchange),
Γ for a typing context for shared sessions of the form u:A (implicitly subject
to weakening and contraction) and ∆ for a linear context of sessions x:A. The
context well-formedness judgments Ψ ` and Ψ ;∆ ` require that types and kinds
(resp. session types) in Ψ (resp. ∆) are well-formed. The judgments Ψ ` K,

5

Ψ ` Context Ψ is well-formed.
Ψ ;∆ ` Context ∆ is well-formed, under assumptions in Ψ .
Ψ ` K K is a kind in context Ψ .
Ψ ` τ :: K τ is a (functional) type of kind K in context Ψ .
Ψ ` A :: K A is a session type of kind K in context Ψ .
Ψ `M : τ M has type τ in context Ψ .
Ψ ;Γ ;∆ ` P :: z:A P offers session z:A when composed with processes

offering sessions specified in Γ and ∆ in context Ψ .
Ψ ` K1 = K2 Kinds K1 and K2 are equal.
Ψ ` τ = σ :: K Types τ and σ are equal of kind K.
Ψ ` A = B :: K Session types A and B are equal of kind K.
Ψ `M = N : τ Terms M and N are equal of type τ .
Ψ ` ∆ = ∆′ :: stype Contexts ∆ and ∆′ are equal, under the assumptions in Ψ .
Ψ ;Γ ;∆ ` P = Q :: z:A Processes P and Q are equal with typing z:A.

Fig. 2. Typing Judgements

Ψ ` τ :: K and Ψ ` A :: K codify well-formedness of kinds, functional and
session types (with kind K), respectively. Their rules are standard.

Typing. An excerpt of the typing rules for terms and processes is given in Fig. 3
and 4, respectively, noting that typing enforces types to be of base kind type
(respectively stype). The rules for dependent functions are standard, including
the type conversion rule which internalises definitional equality of types. We
highlight the introduction rule for the monadic construct, which requires the
appropriate session types to be well-formed and the process P to offer c:A when
provided with the appropriate session contexts.

In the typing rules for processes (Fig. 4), presented as a set of right and left
rules (the former identifying how to offer a session of a given type and the latter
how to use such a session), we highlight the rules for dependently-typed com-
munication and monadic elimination (for type-checking purposes we annotate
constructs with the respective dependent type – this is akin to functional type
theories). To offer a session c:∃x:τ.A we send a term M of type τ and then offer
a session c:A{M/x}; dually, to use such a session we perform an input along c,
bound to x in Q, warranting a use of c as a session of (open) type A. The rules
for the universal are dual. Offering a session c:∀x:τ.A entails receiving on c a
term of type τ and offering c:A. Using a session of such a type requires sending
along c a term M of type τ , warranting the use of c as a session of type A{M/x}.

The rule for the monadic elimination form requires that the term M be of
the appropriate monadic type and that the provided channels uj and yi adhere
to the typing specified in M ’s type. Under these conditions, the process Q may
then use the session c as session A. The type conversion rules reflect session type
definitional equality in typing.

6

(ΠI)

Ψ ` τ :: type Ψ, x:τ `M : σ

Ψ ` λx:τ.M : Πx:τ.σ

(ΠE)

Ψ `M : Πx:τ.σ Ψ ` N : τ

Ψ `M N : σ{N/x}

({}I)

∀i, j.Ψ ` Ai, Bj :: stype Ψ ;uj :Bj ; di:Ai ` P :: c:A

Ψ ` {c← P ← uj ; di} : {uj :Bj ; di : Ai ` c:A}

(Conv)

Ψ `M : τ Ψ ` τ = σ :: type

Ψ `M : σ

Fig. 3. Typing for Terms (Excerpt – See Appendix A.4)

(∃R)

Ψ `M :τ Ψ ;Γ ;∆ ` P :: c:A{M/x}
Ψ ;Γ ;∆ ` c〈M〉∃x:τ.A.P :: c:∃x:τ.A

(∃L)

Ψ ` τ :: type Ψ, x:τ ; Γ ;∆, c:A ` Q :: d:D

Ψ ; Γ ;∆, c:∃x:τ.A ` c(x:τ).Q :: d:D

(∀R)

Ψ ` τ :: type Ψ, x:τ ; Γ ;∆ ` P :: c:A

Ψ ;Γ ;∆ ` c(x:τ).P :: c:∀x:τ.A

(∀L)

Ψ `M :τ Ψ ;Γ ;∆, c:A{M/x} ` Q :: d:D

Ψ ;Γ ;∆, c:∀x:τ.A ` c〈M〉∀x:τ.A.Q :: d:D

({}E)

∆′ = di : Bi uj :Cj ⊆ Γ Ψ `M : {uj :Cj ; di:Bi ` c:A} Ψ ;Γ ;∆, c:A ` Q :: z:C

Ψ ;Γ ;∆′,∆ ` c←M ← uj ; yi;Q :: z:C

(ConvR)

Ψ ;Γ ;∆ ` P :: z:A Ψ ` A = B :: stype

Ψ ;Γ ;∆ ` P :: z:B

(ConvL)

Ψ ;Γ ′;∆′ ` P :: z:A Ψ ;Γ ′;∆′ = Ψ ;Γ ;∆

Ψ ;Γ ;∆ ` P :: z:A

(cut)
Ψ ;Γ ;∆ ` P :: c:A Ψ ;Γ ;∆′, c:A ` Q :: d:D

Ψ ;Γ ;∆,∆′ ` (νc)(P | Q) :: d:D

Fig. 4. Typing for Processes (Excerpt – See Appendix A.5)

Definitional Equality. The crux of any dependent type theory lies in its def-
initional equality. Type equality relies on equality of terms which, by including
the monadic construct, necessarily relies on a notion of process equality.

Our presentation of an intensional definitional equality of terms follows that
of [12], where we consider an intrinsically typed relation, including β and η
conversion (similarly for type equality which includes β and η principles for the
type-level λ-abstractions). An excerpt of the rules for term equality is given in
Fig. 5. The remaining rules are congruence rules and closure under symmetry,
reflexivity and transitivity. Rule (TMEqβ) captures the β-reduction, identifying
a λ-abstraction applied to an argument with the substitution of the argument in
the function body (typed with the appropriately substituted type). We highlight
rule (TMEq{}η), which codifies a general η-like principle for arbitrary terms of
monadic type: We form a monadic term that applies the monadic elimination
form to M , forwarding the result along the appropriate channel, which becomes
a term equivalent to M .

7

(TMEqβ)

Ψ ` τ :: type Ψ, x:τ `M : σ Ψ ` N : τ

Ψ ` (λx:τ.M)N = M{N/x} : σ{N/x}

(TMEqη)

Ψ `M : Πx:τ.σ x 6∈ fv(M)

Ψ ` λx:τ.M x = M : Πx:τ.σ

(TMEq{}η)

Ψ `M : {uj :Bj ; di:Ai ` c:A}
Ψ ` {c← (y ←M ;uj ; di; [y ↔ c])← uj ; di} = M : {uj :Bj ; di:Ai ` c:A}

Fig. 5. Definitional Equality of Terms (Excerpt – See Appendix A.9)

(PEqRed)
Ψ ;Γ ;∆ ` P :: z:A P −→ Q Ψ ;Γ ;∆ ` Q :: z:A

Ψ ;Γ ;∆ ` P = Q :: z:A

(PEq∀η)
Ψ ;Γ ; d:∀x:τ.A ` c(x).d〈x〉.[d↔ c] = [d↔ c] :: c:∀x:τ.A

(PEqCC∀)
Ψ ;Γ ;∆ ` P :: d:B Ψ, x:τ ;Γ ;∆′, d:B ` Q :: c:A

Ψ ;Γ ;∆,∆′ ` (νd)(P | c(x).Q) = c(x).(νd)(P | Q) :: c:∀x:τ.A

Fig. 6. Definitional Equality of Processes (Excerpt – See Appendix A.10)

Definitional equality of processes is summarised in Fig. 6. We rely on process
reduction defined below. Definitional equality of processes consists of the usual
congruence rules, (typed) reductions and the commutting conversions of linear
logic and η-like principles, which allows for forwarding actions to be equated with
the primitive syntactic forwarding construct. Commutting conversions amount
to sound observational equivalences between processes [24], given that session
composition requires name restriction (embodied by the (cut) rule): In rule
(PEqCC∀), either process can only be interacted with via channel c and so post-
poning actions of P to after the input on c (when reading the equality from left
to right) cannot impact the process’ observable behaviours. While P can in gen-
eral interact with sessions in ∆ (or with Q), these interactions are unobservable
due to hiding in the (cut) rule.

Operational Semantics. The operational semantics for the λ-calculus is stan-
dard, noting that no reduction can take place inside monadic terms. The op-
erational (reduction) semantics for processes is presented below where we omit
closure under structural congruence and the standard congruence rules [4,27,31].
The last rule defines spawning a process in a monadic term.

c〈M〉.P | c(x).Q −→ P | Q{M/x} c〈x〉.P | c(x).Q −→ (νx)(P | Q)

!c(x).P | c〈x〉.Q −→ !c(x).P | (νx)(P | Q) c.case{li ⇒ Pi} | c.lj ;Q −→ Pj | Q (lj ∈ li)

(νc)(P | [c↔ d]) −→ P{d/c} c← {c← P ← uj ; di} ← uj ; di;Q −→ (νc)(P | Q)

2.3 Example – Reasoning about Processes using Dependent Types

The use of type indices (i.e. type families) in dependently typed frameworks
adds information to types to produce more refined specifications. Our framework
enables us to do this at the level of session types.

8

Consider a session type that “counts down” on a natural number (we assume
inductive definitions and dependent pattern matching in the style of [23]):

countDown :: Πx:Nat.stype
countDown (succ(n)) = ∃y:Nat.countDown(n)
countDown z = 1

The type family countDown(n) denotes a session type that emits exactly n num-
bers and then terminates. We can now write a (dependently-typed) function that
produces processes with the appropriate type, given a starting value:

counter : Πx:Nat.{countDown(x)}
counter (succ(n)) = {c← c〈succ(n)〉. d← counter(n); [d↔ c]}
counter z = {c← 0}

Note how the type of counter, through the type family countDown, allows us
to specify exactly the number of times a value is sent. This is in sharp contrast
with existing recursive (or inductive/coinductive [19,32]) session types, where
one may only specify the general iterative nature of the behaviour (e.g. “send a
number and then recurse or terminate”).

The example above relies on session type indexing in order to provide addi-
tional static guarantees about processes (and the functions that generate them).
An alternative way is to consider “simply-typed” programs and then prove that
they satisfy the desired properties, using the language itself. Consider a simply-
typed version of the counter above described as an inductive session type:

simpleCounterT :: stype
simpleCounterT = ⊕{dec : Nat ∧ simpleCounterT, done : 1}

There are many processes that correctly implement such a type, given that the
type merely dictates that the session outputs a natural number and recurses
(modulo the dec and done messages to signal which branch of the internal choice
is taken). A function that produces processes implementing such a session, mir-
roring those generated by the counter function above, is:

simpleCounter : Nat→ {simpleCounterT}
simpleCounter (succ(n)) = {c← c.dec; (νd)(d〈succ(n)〉.0 | d(x).c〈x〉.

d← simpleCounter(n); [d↔ c]}
simpleCounter z = {c← c.done; 0}

The process generated by simpleCounter, after emiting the dec label, spawns a
process in parallel that sends the appropriate number, which is received by the
parallel thread and then sent along the session c. Despite its simplicity, this
example embodies a general pattern where a computation is spawned in parallel
(itself potentially spawning many other threads) and the main thread then waits
for the result before proceeding.

While such a process is typable in most session typing frameworks, our theory
enables us to prove that the counter implementation above indeed counts down

9

from a given number by defining an appropriate (inductive) type family, indexed
by monadic values (i.e. processes):

corrCount :: Πx:Nat.Πy:{simpleCounterT}.type
corrz : corrCount z {c← c.done; 0}
corrn : Πn:Nat.ΠP :{simpleCounterT}.corrCountnP →

corrCount (succ(n)) {c← c.dec; c〈succ(n)〉.d← P ; [d↔ c]}

The type family corrCount, indexed by a natural number and a monadic value
implementing the session type simpleCounter, is defined via two constructors:
corrz, which specifies that a correct 0 counter emits the done label and terminates;
and corrn, which given a monadic value P that is a correct n-counter, defines
that a correct (n+ 1)-counter emits n+ 1 and then proceeds as P (modulo the
label emission bookkeeping).

The proof of correctness of the simpleCounter function above is no more than
a function of type Πn:Nat.corrCountn (simpleCounter(n)), defined below:

prf : Πn:Nat.corrCountn (simpleCounter(n))
prf z = corrz
prf (succ(n)) = corrn n (simpleCounter(n)) (prf n)

Note that in this scenario, the processes that index the corrCount type fam-
ily are not syntactically equal to those generated by simpleCounter, but rather
definitionally equal.

Typically, the processes that index such correctness specifications tend to
be distilled versions of the actual implementations, which often perform some
additional internal computation or communication steps. Since our notion of
definitional equality of processes includes reduction (and also commuting con-
versions which account for type-preserving shuffling of internal communication
actions [28]), the type conversion mechanism allows us to use the techniques
described above to generally reason about specification conformance.

We may also consider a variant of the example above which does not force
outputs to match precisely with the type index:

countDown′ :: Πx:Nat.stype
countDown′ (succ(n)) = ∃y:Nat.countDown′(n)
countDown′ z = 1

The type countDown′ n will still require n outputs to be performed, but unlike
with countDown we do not enforce a relation between the iteration and the
number being sent. An implementation of such a type is given below, using
fundamentally the same code as for counter:

counter′ : Πx:Nat.{countDown′(x)}
counter′ (succ(n)) = {c← c〈succ(n)〉.

d← counter′(n);
[d↔ c]}

counter′ z = {c← 0}

10

We may then use an heterogeneous equality (a special case of the so-called
John Major equality [20]) of the form

JMEq :: ΠA:stype.ΠB:stype.Πx:{A}.Πy:{B}.type
JMEqRefl : λA:stype.λx:{A}.JMEqAAxx

to inductively show that the processes produced by counter and counter′ are
indeed the same.

eqs : Πn:Nat.JMEq (countDown(n)) (countDown′(n)) (counter(n)) (counter′(n))
eqs z = JMEqRefl 1 {c← 0}
eqs (succ(n)) = case (eqsn) of { ⇒ JMEqRefl (countDown(succ(n)))

(counter(succ(n))))}

We note that the example above makes extensive use of dependent pattern
matching, using some implicit assumptions on its behaviour that have not been
formalised in this paper and are left for future work.

2.4 Type Soundness of the Framework

The main goal of this section is to present type soundness of our framework
through a subject reduction result. We also show that our theory guarantees
progress for terms and processes. The development requires a series of auxiliary
results (detailed in Appendix B) pertaining to the functional and process layers
which are ultimately needed to produce the inversion properties necessary to
establish subject reduction. We note that strong normalisation results for linear-
logic based session processes are known in the literature [3,32,28], even in the
presence of impredicative polymorphism, restricted corecursion and higher-order
data. Such results are directly applicable to our work using appropriate semantics
preserving type erasures.

In the remainder we often write Ψ ` J to stand for a well-formedness,
typing or definitional equality judgment of the appropriate form. Similarly for
Ψ ;Γ ;∆ ` J . We begin with the substitution property, which naturally holds for
both layers, noting that the dependently typed nature of the framework requires
substitution in both contexts, terms and in types.

Lemma 2.1 (Substitution). Let Ψ `M : τ :

1. If Ψ, x:τ, Ψ ′ ` J then Ψ, Ψ ′{M/x} ` J {M/x};
2. If Ψ, x:τ, Ψ ′;Γ ;∆ ` J then Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` J {M/x}

Combining substitution with a form of functionality for typing (i.e. that substi-
tution of equal terms in a well-typed term produces equal terms) and for equality
(i.e. that substitution of equal terms in a definitional equality proof produces
equal terms), we can establish validity for typing and equality, which is a form
of internal soundness of the type theory stating that judgments are consistent
across the different levels of the theory.

11

Lemma 2.2 (Validity for Typing). (1) If Ψ ` τ :: K or Ψ ` A :: K then
Ψ ` K; (2) If Ψ ` M : τ then Ψ ` τ :: type; and (3) If Ψ ;Γ ;∆ ` P :: z:A then
Ψ ` A :: stype.

Lemma 2.3 (Validity for Equality).

1. If Ψ `M = N : τ then Ψ `M : τ , Ψ ` N : τ and Ψ ` τ :: type

2. If Ψ ` τ = σ :: K then Ψ ` τ :: K, Ψ ` σ :: K and Ψ ` K
3. If Ψ ` A = B :: K then Ψ ` A :: K, Ψ ` B :: K and Ψ ` K
4. If Ψ ` K = K ′ then Ψ ` K and Ψ ` K ′
5. If Ψ ;Γ ;∆ ` P = Q :: z:A then Ψ ;Γ ;∆ ` P :: z:A, Ψ ;Γ ;∆ ` Q :: z:A and

Ψ ` A :: stype

With these results we establish the appropriate inversion and injectivity prop-
erties which then enable us to show unicity of types (and kinds).

Theorem 2.4 (Unicity of Types and Kinds).

1. If Ψ `M : τ and Ψ `M : τ ′ then Ψ ` τ = τ ′ :: type

2. If Ψ ` τ :: K and Ψ ` τ :: K ′ then Ψ ` K = K ′

3. If Ψ ;Γ ;∆ ` P :: z:A and Ψ ;Γ ;∆ ` P :: z:A′ then Ψ ` A = A′ :: stype

4. If Ψ ` A :: K and Ψ ` A :: K ′ then Ψ ` K = K ′

All the results above, combined with the process-level properties established
in [29,28,5] enable us to show the following:

Theorem 2.5 (Subject Reduction – Terms). If Ψ ` M : τ and M −→ M ′

then Ψ `M ′ : τ

Theorem 2.6 (Subject Reduction – Processes). If Ψ ;Γ ;∆ ` P :: z:A and
P −→ P ′ then ∃Q such that P ′ ≡ Q and Ψ ;Γ ;∆ ` Q :: z:A

Theorem 2.7 (Progress – Terms). If Ψ ` M : τ then either M is a value
or M −→M ′

As common in logical-based session type theories, typing enforces a strong
notion of global progress which states that closed processes that are waiting to
perform communication actions cannot get stuck (this relies on a notion of live
process, defined as live(P) iff P ≡ (νñ)(π.Q | R) for some process R, sequence of
names ñ and a non-replicated guarded process π.Q). We note that the restricted
typing for P is without loss of generality, due to the (cut) rule.

Theorem 2.8 (Progress – Processes). If Ψ ; ·; · ` P :: c:1 and live(P) then
∃Q such that P −→ Q

12

3 Embedding the Functional Layer in the Process Layer

Having introduced our type theory and showcased some of its informal expres-
siveness in terms of the ability to specify and statically verify true data dependent
protocols, as well as the ability to prove properties of processes, we now develop
a formal expressiveness result for our theory, showing that the process level type
constructs are able to encode the dependently-typed functional layer, faithfully
preserving type dependencies.

Specifically, we show that (1) the type-level constructs in the functional layer
can be represented by those in the process layer combined with the contextual
monad type, and (2) all term level constructs can be represented by session-
typed processes that exchange monadic values. Thus, we show that both λ-
abstraction and application can be eliminated while still preserving non-trivial
type dependencies. Crucially, we note that the monadic construct cannot be
fully eliminated due to the cross-layer nature of session type dependencies: In
the process layer, simply-kinded dependent types (i.e. types with kind stype)
are of the form ∀x:τ.A where τ is of kind type and A of kind stype (where x
may occur). Operationally, such a session denotes an input of some term M of
type τ with a continuation of type A{M/x}. Thus, to faithfully encode type
dependencies we cannot represent such a type with a non-dependently typed
input (e.g. a type of the form A(B).

3.1 The Embedding

A first attempt. Given the observation above, a seemingly reasonable option
would be to attempt an encoding that maintains monadic objects solely at the
level of type indices and then exploits Girard’s encoding [9] of function types
τ → σ as !JτK → JσK, which is adequate for session-typed processes [30]. Thus
a candidate encoding for the type Πx:τ.σ would be ∀x:{JτK}.!JτK (JσK, where
J−K denotes our encoding on types. If we then consider the encoding at the level
of terms, typing dictates the following (we write JMKz for the process encoding
of M : τ , where z is the session channel along which one may observe the “result”
of the encoding, typed with JτK):

Jλx:τ.MKz , z(x).z(x′).JMKz
JM NKz , (νx)(JMKx | x〈{JNKy}〉.x〈x′〉.(!x′(y).JNKy | [x↔ z])

However, this candidate encoding breaks down once we consider definitional
equality. Specifically, compositionality (i.e. the relationship between JM{N/x}Kz
and the encoding of N substituted in that of M) requires us to relate JM{N/x}Kz
with (νx)(JMKz{{JNKy}/x} | !x′(y).JNKy), which relies on reasoning up-to ob-
servational equivalence of processes, a much stronger relation than our notion
of definitional equality. Therefore it is fundamentally impossible for such an en-
coding to preserve our definitional equality, and thus it cannot preserve typing
in the general case.

13

Kind:

JtypeK , stype JstypeK , stype

JΠx:τ.KK , Πx:{JτK}.JKK JΠt :: K1.K2K , Πt::JK1K.JK2K
Functional:

JΠx:τ.σK , ∀x:{JτK}.JσK J{uj :Bj ; di:Bi ` c:A}K , !JBjK (JBiK (JAK
Jλx:τ.σK , λx:{JτK}.JσK Jτ MK , JτK {JMKc}
Jλt::K.τK , λt::JKK.JτK Jτ σK , JτK JσK
Session:

J∀x:τ.AK , ∀x:{JτK}.JAK J∃x:τ.AK , ∃x:{JτK}.JAK
Jλx:τ.AK , λx:{JτK}.JAK JAMK , JAK {JMKc}
Terms:

Jλx:τ.MKz , z(x:{JτK}).JMKz JM NKz , (νx)(JMKx | x〈{JNKy}〉.[x↔ z])

JxKz , y ← x; [y ↔ z] J{z ← P ← uj ; di}Kz , z(u0).z(uj).z(d0).z(dn).JP K

Processes:

J(νx)(P | Q)K , (νx)(JP K | JQK) J0K , 0 Jx〈y〉.(P | Q)K , x〈y〉.(JP K | JQK)
Jx〈M〉.P K , x〈{JMKy}〉.JP K Jx(y).P K , x(y).JP K
Jc←M ← uj ; yi;QK , (νc)(JMKc | c〈v1〉.(u1〈a1〉.[a1 ↔ v1] | · · · |

c〈d1〉.([y1 ↔ d1] | · · · | c〈dn〉.([yn ↔ dn] | JQK) . . .)

Fig. 7. An embedding of dependent functions into processes

A faithful embedding. We now develop our embedding of the functional layer
into the process layer which is compatible with definitional equality. Our target
calculus is reminiscent of a higher-order (in the sense of higher-order processes
[25]) session calculus [21]. Our encoding J−K is inductively defined on kinds,
types, session types, terms and processes. As usual in process encodings of the
λ-calculus, the encoding of a term M is indexed by a result channel z, written
JMKz, where the behaviour of M may be observed.

The embedding is presented in Fig. 7, noting that the encoding extends
straightforwardly to typing contexts, where functional contexts Ψ, x:τ are mapped
to {JΨK}, x:{JτK}. The mapping of base kinds is straightforward. Dependent
kinds Πx:τ.K rely on the monad for well-formedness and are encoded as (ses-
sion) kinds of the form Πx:{JτK}.JKK. The higher-kinded types in the functional
layer are translated to the corresponding type-level constructs of the process
layer where all objects that must be type-kinded rely on the monad to satisfy
this constraint. For instance, λx:τ.σ is mapped to the session-type abstraction
λx:{JτK}.JσK and the type-level application τ M is translated to JτK {JMKc}.
Given the observation above on embedding the dependent function type Πx:τ.σ,
we translate it directly to ∀x:{JτK}.JσK, that is, functions from τ to σ are mapped
to sessions that input processes implementing JτK and then behave as JσK ac-
cordingly. The encoding for monadic types simply realises the contextual nature
of the monad by performing a sequence of inputs of the appropriate types (with
the shared sessions being of ! type).

The mutually dependent nature of the framework requires us to extend
the mapping to the process layer. Session types are mapped homomorphically

14

(e.g. JA (BK , JAK (JBK) with the exception of dependent inputs and out-
puts which rely on the monad, similarly for type-level functions and application.

The encoding of λ-terms is guided by the embedding for types: the abstrac-
tion λx:τ.M is mapped to an input of a term of type {JτK} with continuation
JMKz; application M N is mapped to the composition of the encoding of M on a
fresh name x with the corresponding output of {JNKy}, which is then forwarded
to the result channel z; monadic expressions are translated to the appropriate
sequence of inputs, as dictated by the translation of the monadic type; and,
the translation of variables makes use of the monadic elimination form (since
the encoding enforces variables to always be of monadic type) combined with
forwarding to the appropriate result channel.

The mapping for processes is mostly homomorphic, using the monad con-
structor as needed. The only significant exception is the encoding for monadic
elimination which must provide the encoded monadic term JMKc with the neces-
sary channels. Since the session calculus does not support communication of free
names this is achieved by a sequence of outputs of fresh names combined with
forwarding of the appropriate channel. To account for replicated sessions we must
first trigger the replication via an output which is then forwarded accordingly.

We can illustrate our encoding via a simple example of an encoded function
(we omit type annotations for conciseness):

J(λx.x) (λx.λy.y)Kz = (νc)(Jλx.xKc | c〈{Jλx.λy.yKw}〉.[c↔ z]) =
(νc)(c(x).y ← x; [y ↔ c] | c〈{w(x).w(y).d← y; [d↔ w]}〉.[c↔ z])

−→+ z(x).z(y).d← y; [d↔ z] = Jλx.λy.yKz

3.2 Properties of the Embedding

We now state the key properties satisfied by our embedding, ultimately resulting
in type preservation and operational correspondence. For conciseness, in the
statements below we list only the cases for terms and processes, omitting those
for types and kinds (see Appendix C). The key property that is needed is a notion
of compositionality, which unlike in the sketch above no longer falls outside of
definitional equality.

Lemma 3.1 (Compositionality).

1. Ψ ;Γ ;∆ ` JM{N/x}Kz = JMKz{{JNKy}/x} :: z:JA{N/x}K
2. Ψ ;Γ ;∆ ` JP{M/x}K :: z:JA{M/x}K iff Ψ ;Γ ;∆ ` JP K{{JMKc}/x} :: z:JAK{{JMKc}/x}

Given the dependently typed nature of the framework, establishing the key
properties of the encoding must be done simultaneously (relying on some auxil-
iary results – see Appendix C).

Theorem 3.2 (Preservation of Equality).

1. If Ψ `M = N : τ then {JΨK}; ·; · ` JMKz = JNKz :: z:JτK
2. If Ψ ;Γ ;∆ ` P = Q :: z:A then {JΨK}; JΓ K; J∆K ` JP K = JQK :: z:JAK

15

Theorem 3.3 (Preservation of Typing).

1. If Ψ `M : τ then {JΨK}; ·; · ` JMKz :: z:JτK
2. If Ψ ;Γ ;∆ ` P :: z:A then {JΨK}; JΓ K; J∆K ` JP K :: z:JAK

Theorem 3.4 (Operational Correspondence). If Ψ ;Γ ;∆ ` P :: z:A and
Ψ `M : τ then:

1. (a) If P −→ P ′ then JP K −→+ Q with {JΨK}; JΓ K; J∆K ` Q = JP ′K :: z:JAK and
(b) if JP K −→ P ′ then P −→+ Q with {JΨK}; JΓ K; J∆K ` P ′ = JQK :: z:JAK

2. (a) If M −→ M ′ then JMKz −→+ N with {JΨK}; ·; · ` N = JM ′Kz :: z:JτK and
(b) if JMKz −→ P then M −→ N with {JΨK}; ·; · ` JNKz = P :: z:JτK

In Theorem 3.4, (a) is commonly referred to as operational completeness,
with (b) establishing soundness. As exemplified above, our encoding satisfies a
very precise operational correspondence with the original λ-terms.

4 Related and Future Work

Enriching Session Types via Type Structure. Exploiting the linear logical
foundations of session types, [27] considers a form of value dependencies where
session types can state properties of exchanged data values, while the work [31]
introduces the contextual monad in a simply-typed setting. Our development
not only subsumes these two works, but goes beyond simple value dependencies
by extending to a richer type structure and integrating dependencies with the
contextual monad. Recently, [1] considers a non-conservative extension of linear
logic-based session types with sharing, allowing true non-determinism. Their
work includes dependent quantifications with shared channels, but their type
syntax does not include free type variables, so the actual type dependencies
do not arise (see [1, 37:8]). Thus none of the examples in this paper can be
represented in [1]. The work [17] studies gradual session types. To the best of
our knowledge, the main example in [17, § 2] is statically representable in our
framework as in the example of § 1, where protocol actions depend on values
that are communicated (or passed as function arguments).

In the context of multiparty session types, the theory of multiparty indexed
session types is studied in [7], and implemented in a protocol description lan-
guage [22]. The main aim of these works is to use indexed types to represent
an arbitrary number of session participants. The work [33] extends [27] to mul-
tiparty sessions in order to treat value dependency across multiple participants.
Extending our framework to multiparty [16] or non-logic based session types [15]
is an interesting future topic.

Combining Linear and Dependent Types. Many works have studied the
various challenges of integrating linearity in dependent functional type theories.
We focus on the most closely related works. The work [6] introduced the Linear
Logical Framework (LLF), integrating linearity with the LF [11] type theory,
which was later extended to the Concurrent Logical Framework (CLF) [35],

16

accounting for further linear connectives. Their theory is representable in our
framework through the contextual monad (encompassing full intuitionistic linear
logic), depending on linearly-typed processes that can express dependently typed
functions (§ 3).

The work of [18] integrates linearity with type dependencies by extending
LNL [2]. Their work is aimed at reasoning about imperative programs using a
form of Hoare triples, requiring features that we do not study in this work such
has proof irrelevance and computationally irrelevant quantification. Formally,
their type theory is extensional which introduces significant technical differences
from our intensional type theory, such as a realisability model in the style of
NuPRL [10] to establish consistency.

Recently, [8] proposed an extension of LLF with first-class contexts (which
may contain both linear and unrestricted hypotheses). While the contextual
aspects of their theory are reminiscent of our contextual monad, their framework
differs significantly from ours, since it is designed to enable higher-order abstract
syntax (commonplace in the LF family of type theories), focusing on a type
system for canonical LF objects with a meta-language that includes contexts
and context manipulation. They do not consider additives since their integration
with first-class contexts can break canonicity.

While none of the above works considers processes as primitive, their tech-
niques should be useful for, e.g. developing algorithmic type-checking and inte-
grating inductive and coinductive session types based on [28,32,19].

Dependent Types and Higher-Order π-calculus. The work [37] studies a
form of dependent types where the type of processes takes the form of a mapping
∆ from channels x to channel types T representing an interface of process P . The
dependency is specified as Π(x:T)∆, representing a channel abstraction of the
environment. This notion is extended to an existential channel dependency type
Σ(x:T)∆ to address fresh name creation [36,13]. Combining our process monad
with dependent types can be regarded as an “interface” which describes explicit
channel usages for processes. The main differences are (1) our dependent types
are more general, treating full dependent families including terms and processes
in types, while [37,36,13] study only channel dependency to environments (i.e.
neither terms nor processes appear in types, only channels); and (2) our calculus
emits only fresh names, not needing to handle the complex scoping mechanism
treated in [36,13]. In this sense, the process monad provides an elegant framework
to handle higher-order computations and assign non-trivial types to processes.
Acknowledgements. The authors would like to thank the anonymous re-
views for their comments and suggestions. This work is partially supported by
EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and
EP/N028201/1.

References

1. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017)

17

2. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models (ex-
tended abstract). In: CSL. pp. 121–135 (1994)

3. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: ESOP 2013. pp. 330–349 (2013)

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CON-
CUR 2010. pp. 222–236 (2010)

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26(3), 367–423 (2016)

6. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75
(2002)

7. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Logical Methods in Computer Science 8(4) (2012), http://dx.doi.org/10.
2168/LMCS-8(4:6)2012

8. Georges, A.L., Murawska, A., Otis, S., Pientka, B.: LINCX: A linear logical frame-
work with first-class contexts. In: ESOP. pp. 530–555 (2017)

9. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. Harper, R.: Constructing type systems over an operational semantics. Journal of

Symbolic Computation 14(1), 71 – 84 (1992)
11. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM

40(1), 143–184 (1993)
12. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type

theory. ACM Trans. Comput. Log. 6(1), 61–101 (2005)
13. Hennessy, M., Rathke, J., Yoshida, N.: safeDpi: a language for controlling mobile

code. Acta Inf. 42(4-5), 227–290 (2005)
14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disci-

pline for structured communication-based programming. In: ESOP’98. pp. 122–138
(1998)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: ESOP’98. vol. 1381, pp.
22–138 (1998)

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL’08. pp. 273–284 (2008)

17. Igarashi, A., Thiemann, P., Vasconcelos, V.T., Wadler, P.: Gradual session types.
PACMPL 1(ICFP), 38:1–38:28 (2017)

18. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent
types. In: POPL’15. pp. 17–30 (2015)

19. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP 2016. pp. 434–447 (2016)

20. McBride, C.: Elimination with a motive. In: TYPES 2000,. pp. 197–216 (2000)
21. Mostrous, D., Yoshida, N.: Two session typing systems for higher-order mobile

processes. In: TLCA07. pp. 321–335 (2007)
22. Ng, N., Yoshida, N.: Pabble: parameterised Scribble. Service Oriented Computing

and Applications 9(3-4), 269–284 (2015)
23. Norell, U.: Towards a practical programming language based on dependent type

theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology (2007)

24. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: ESOP. pp. 539–558 (2012)

25. Sangiorgi, D., Walker, D.: The pi-calculus: A theory of mobile processes. C.U.P
(2001)

http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012

18

26. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE’94. pp. 398–413 (1994)

27. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP’11. pp. 161–172 (2011)

28. Toninho, B.: A Logical Foundation for Session-based Concurrent Computation.
Ph.D. thesis, Carnegie Mellon University and New University of Lisbon (2015)

29. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic lin-
ear type theory. Tech. Rep. CMU-CS-11-139, School of Computer Science, Carnegie
Mellon University (2011)

30. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:
FOSSACS 2012. pp. 346–360 (2012)

31. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: A monadic integration. In: ESOP. pp. 350–369 (2013)

32. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: TGC 2014. pp. 159–175 (2014)

33. Toninho, B., Yoshida, N.: Certifying data in multiparty session types. Journal of
Logical and Algebraic Methods in Programming 90(C), 61–83 (2017)

34. Toninho, B., Yoshida, N.: Depending on session-typed processes. In: FoSSaCS
(2018), to Appear

35. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: The propositional fragment. In: TYPES’03. pp. 355–377 (2003)

36. Yoshida, N.: Channel dependent types for higher-order mobile processes. In:
POPL’04. pp. 147–160 (2004)

37. Yoshida, N., Hennessy, M.: Assigning types to processes. Inf. Comput. 174(2),
143–179 (2002)

19

A Appendix – Dependently-typed Calculus

A.1 Complete Rules for Dependently-Typed System

We recall the meaning of the several judgments of our type theory:

Ψ ` Context Ψ is well-formed.
Ψ ` K K is a kind in context Ψ .
Ψ ` τ :: K τ is a (functional) type of kind K in context Ψ .
Ψ ` A :: K A is a session type of kind K in context Ψ .
Ψ `M : τ M has type τ in context Ψ .
Ψ ;Γ ;∆ ` P :: z:A P offers session z:A when composed with processes according

to Γ and ∆ in context Ψ .
Ψ ` K1 = K2 Kinds K1 and K2 are equal.
Ψ ` τ = σ :: K Types τ and σ are equal of kind K.
Ψ ` A = B :: K Session types A and B are equal of kind K.
Ψ `M = N : τ Terms M and N are equal of type τ .
Ψ ;Γ ;∆ ` P = Q :: z:A Processes P and Q are equal with typing z:A.

Well-formed Contexts We write · for the empty context. We write Ψ, x:τ for
the extension of context Ψ with the binding x:τ . We assume that x does not
occur in Ψ . We use a similar notation for the session typing contexts ∆ and Γ .

· `
Ψ ` Ψ ` τ :: type

Ψ, x:τ `
Ψ ` Ψ ` K
Ψ, t::K `

Ψ ` Ψ ;∆ ` Ψ ` A :: stype

Ψ ;∆,x:A `
Ψ ` Ψ ;Γ ` Ψ ` A :: stype

Ψ ;Γ, x:A `

Well-formed Kinds

Ψ `
Ψ ` type

Ψ `
Ψ ` stype

Ψ, x:τ ` K Ψ ` τ :: type

Ψ ` Πx:τ.K

Ψ, x:τ ` K Ψ ` τ :: stype

Ψ ` Πx:τ.K

Ψ ` K Ψ, t::K ` K ′

Ψ ` Πt::K.K ′

A.2 Well-formed (Functional) Types

Ψ ` τ :: type Ψ, x:τ ` σ :: type

Ψ ` Πx:τ.σ :: type

Ψ ` τ :: type Ψ, x:τ ` σ :: K

Ψ ` λx:τ.σ :: Πx:τ.K

Ψ ` τ :: Πx:σ.K Ψ `M : σ
Ψ ` τ M :: K{M/x}

∀i, j.Ψ ` Ai :: stype Ψ ` Bj :: stype Ψ ` A :: stype

Ψ ` {uj :Bj ; di:Ai ` c:A} :: type

Ψ ` K Ψ, t::K ` σ :: K ′

Ψ ` λt::K.σ :: Πt::K.K ′
Ψ ` τ :: Πt::K.K ′ Ψ ` σ :: K

Ψ ` τ σ :: K ′{σ/t}
t::K ∈ Ψ Ψ `
Ψ ` t :: K

20

A.3 Well-formed Session Types

Ψ `
Ψ ` 1 :: stype

Ψ ` A :: stype

Ψ ` !A :: stype

Ψ ` A :: stype Ψ ` B :: stype

Ψ ` A(B :: stype

Ψ ` A :: stype Ψ ` B :: stype

Ψ ` A⊗B :: stype

Ψ ` τ :: type Ψ, x:τ ` A :: stype

Ψ ` ∀x:τ.A :: stype

Ψ ` τ :: type Ψ, x:τ ` A :: stype

Ψ ` ∃x:τ.A :: stype

∀i.Ψ ` Ai :: stype

Ψ ` N{li : Ai} :: stype

∀i.Ψ ` Ai :: stype

Ψ ` ⊕{li : Ai} :: stype

Ψ ` τ :: type Ψ, x:τ ` A :: K

Ψ ` λx:τ.A :: Πx:τ.K

Ψ ` A :: Πx:τ.K Ψ `M : τ
Ψ ` AM :: K{M/x}

Ψ ` A :: K Ψ ` K = K ′

Ψ ` A :: K ′

Ψ, t::K ` A :: K ′

Ψ ` λt::K.A :: Πt::K.K ′
Ψ ` A :: Πt::K.K ′ Ψ ` B :: K

Ψ ` AB :: K ′{B/x}
Ψ ` t::K ∈ Ψ
Ψ ` t :: K

A.4 Typing for λ-Terms

(ΠI)

Ψ ` τ :: type Ψ, x:τ `M : σ

Ψ ` λx:τ.M : Πx:τ.σ

(ΠE)

Ψ `M : Πx:τ.σ Ψ ` N : τ

Ψ `M N : σ{N/x}
(var)

Ψ ` x:τ ∈ Ψ
Ψ ` x:τ

({}I)

∀i, j.Ψ ` Ai, Bj :: stype Ψ ;uj :Bj ; di:Ai ` P :: c:A

Ψ ` {c← P ← uj ; di} : {uj :Bj ; di : Ai ` c:A}
(Conv)

Ψ `M : τ Ψ ` τ = σ :: type

Ψ `M : σ

21

A.5 Typing for Processes

(∃R)

Ψ `M :τ Ψ ;Γ ;∆ ` P :: c:A{M/x}
Ψ ;Γ ;∆ ` c〈M〉∃x:τ.A.P :: c:∃x:τ.A

(∃L)

Ψ ` τ :: type Ψ, x:τ ; Γ ;∆, c:A ` Q :: d:D

Ψ ; Γ ;∆, c:∃x:τ.A ` c(x:τ).Q :: d:D
(∀R)

Ψ ` τ :: type Ψ, x:τ ; Γ ;∆ ` P :: c:A

Ψ ;Γ ;∆ ` c(x:τ).P :: c:∀x:τ.A

(∀L)

Ψ `M :τ Ψ ;Γ ;∆, c:A{M/x} ` Q :: d:D

Ψ ;Γ ;∆, c:∀x:τ.A ` c〈M〉∀x:τ.A.Q :: d:D
(id)

Ψ ;Γ ` [Ψ ` A :: stype]

Ψ ;Γ ; d:A ` [d↔ c] :: c:A

(1R)

Ψ ;Γ `
Ψ ;Γ ; · ` 0 :: c:1

(1L)

Ψ ;Γ ;∆ ` P :: d:D

Ψ ;Γ ;∆, c:1 ` P :: d:D

(!R)

Ψ ;Γ ; · ` P :: x:A

Ψ ;Γ ; · ` !c(x).P :: c:!A

(!L)

Ψ ;Γ, u:A;∆ ` P :: d:D

Ψ ;Γ ;∆, c:!A ` P{c/u} :: d:D

(copy)

Ψ ;Γ, u:A;∆,x:A ` P :: d:D

Ψ ;Γ, u:A;∆ ` (νx)u〈x〉.P :: d:D

(⊗R)

Ψ ;Γ ;∆1 ` P1 :: x:A Ψ ;Γ ;∆ ` P2 :: c:B

Ψ ;Γ ;∆1, ∆2 ` (νx)c〈x〉.(P1 | P2) :: c:A⊗B

(⊗L)

Ψ ;Γ ;∆,x:A, c:B ` Q :: d:D

Ψ ;Γ ;∆, c:A⊗B ` c(x).Q :: d:D

((R)

Ψ ;Γ ;∆,x:A ` P :: c:B

Ψ ;Γ ;∆ ` c(x).P :: c:A(B

((L)

Ψ ;Γ ;∆1 ` Q1 :: x:A Ψ ;Γ ;∆2, c:B ` Q2 :: d:D

Ψ ;Γ ;∆1, ∆2, c:A(B ` (νx)c〈x〉.(Q1 | Q2) :: d:D

(NR)

Ψ ;Γ ;∆ ` P1 :: c:A1 . . . Ψ ;Γ ;∆ ` Pn :: c:An

Ψ ;Γ ;∆ ` c.case(lj ⇒ Pj) :: c: N {lj :Aj}

(NL)

Ψ ;Γ ;∆, c:Ai ` Q :: d:D

Ψ ;Γ ;∆, c: N {lj :Aj} ` c.li;Q :: d:D

(⊕R)

Ψ ;Γ ;∆ ` P :: c:Ai

Ψ ;Γ ;∆ ` c.li;P :: c:⊕ {lj :Aj}

(⊕L)

Ψ ;Γ ;∆, c:A1 ` Q1 :: d:D . . . Ψ ;Γ ;∆, c:An ` Qn :: d:D

Ψ ;Γ ;∆, c:⊕ {lj :Aj} ` c.case(lj ⇒ Qj) :: d:D

(cut)

Ψ ;Γ ;∆1 ` P :: x:A Ψ ;Γ ;∆2, x:A ` Q :: d:D

Ψ ;Γ ;∆1, ∆2 ` (νx)(P | Q) :: d:D

(cut!)

Ψ ;Γ ; · ` P :: x:A Ψ ;Γ, u:A;∆ ` Q :: d:D

Ψ ;Γ ;∆ ` (νu)(!u(x).P | Q) :: d:D
({}E)

∆′ = di : Bi uj :Cj ⊆ Γ Ψ `M : {uj :Cj ; di:Bi ` c:A} Ψ ;Γ ;∆,x:A ` Q :: z:C

Ψ ;Γ ;∆′, ∆ ` x←M ← uj ; yi;Q :: z:C

(ConvR)

Ψ ;Γ ;∆ ` P :: z:A Ψ ` A = B :: stype

Ψ ;Γ ;∆ ` P :: z:B

(ConvL)

Ψ ;Γ ′;∆′ ` P :: z:A Ψ ;Γ ′;∆′ = Ψ ;Γ ;∆

Ψ ;Γ ;∆ ` P :: z:A

22

A.6 Definitional Equality for Kinds

(KEqR)

Ψ ` K
Ψ ` K = K

(KEqS)

Ψ ` K1 = K2 Ψ ` K2 = K3

Ψ ` K1 = K3

(KEqT)

Ψ ` K2 = K1

Ψ ` K1 = K2

(KEqΠ)

Ψ ` τ = σ :: type Ψ, x:τ ` K1 = K2

Ψ ` Πx:τ.K1 = Πx:σ.K2

(KEqKΠ)

Ψ ` K1 = K3 Ψ, t::K1 ` K2 = K4

Ψ ` Πt :: K1.K2 = Πt :: K3.K4

A.7 Definitional Equality for (Functional) Types

(TEqR)

Ψ ` τ :: type

Ψ ` τ = τ :: type

(TEqT)

Ψ ` τ1 = τ2 :: type Ψ ` τ2 = τ3 :: type

Ψ ` τ1 = τ3 :: type
(TEqS)

Ψ ` σ = τ :: type

Ψ ` τ = σ :: type

(TEqΠ)

Ψ ` τ = τ ′ :: type Ψ, x:τ ` σ = σ′ :: type

Ψ ` Πx:τ.σ = Πx:τ ′.σ′ :: type
(TEqλ)

Ψ ` τ = τ ′ :: type Ψ, x:τ ` σ = σ′ :: K

Ψ ` λx:τ.σ = λx:τ ′.σ′ :: Πx:τ.K

(TEqApp)

Ψ ` τ = σ :: Πx:τ ′.K Ψ `M = N : τ ′

Ψ ` τ M = σN :: K{M/x}
(TEqβ)

Ψ, x:τ ` σ :: K Ψ `M : τ

Ψ ` (λx:τ.σ)M = σ{M/x} :: K{M/x}

(TEqη)

Ψ ` σ :: Πx:τ.K x 6∈ fv(σ)

Ψ ` λx:τ.σ x = σ :: Πx:τ.K

(TEq{})
∀i, j. Ψ ` Ai = Bi :: stype Ψ ` Cj = Dj :: stype Ψ ` A = B :: stype

Ψ ` {uj :Cj ; di:Ai ` c:A} = {uj :Dj ; di:Bi ` c:B} :: type
(TEqTλ)

Ψ ` K1 = K2 Ψ, t::K1 ` τ = σ :: K3

Ψ ` λt::K1.τ = λt::K2.σ :: Πx:K1.K3

(TEqTApp)

Ψ ` τ1 = σ1 :: Πt::K1.K2 Ψ ` τ2 = σ2 : K1

Ψ ` τ1 τ2 = σ1 σ2 :: K2{τ2/t}
(TEqTβ)

Ψ, t::K ` τ :: K ′ Ψ ` σ :: K

Ψ ` (λt::K.τ)σ = τ{σ/t} :: K ′{σ/t}

(TEqConv)

Ψ ` τ = σ :: K Ψ ` K = K ′

Ψ ` τ = σ :: K ′

23

A.8 Definitional Equality for Session Types

(STEqR)

Ψ ` A :: stype

Ψ ` A = A :: stype

(STEqS)

Ψ ` B = A :: stype

Ψ ` A = B :: stype

(STEqT)

Ψ ` A = B :: stype Ψ ` B = C :: stype

Ψ ` A = C :: stype

(STEq!)

Ψ ` A = B :: stype

Ψ ` !A = !B :: stype

(STEq()

Ψ ` A = C :: stype Ψ ` B = D :: stype

Ψ ` A(B = C (D :: stype

(STEq⊗)

Ψ ` A = C :: stype Ψ ` B = D :: stype

Ψ ` A⊗B = C ⊗D :: stype

(STEq∀)
Ψ ` τ = τ ′ :: type Ψ, x:τ ` A = B :: stype

Ψ ` ∀x:τ.A = ∀x:τ ′.B :: stype

(STEq∃)
Ψ ` τ = τ ′ :: type Ψ, x:τ ` A = B :: stype

Ψ ` ∃x:τ.A = ∃x:τ ′.B :: stype

(STEqN)

∀i.Ψ ` Ai = Bi :: stype

Ψ ` N{li:Ai} = N{li:Bi} :: stype

(STEq⊕)

∀i.Ψ ` Ai = Bi :: stype

Ψ ` ⊕{li:Ai} = ⊕{li:Bi} :: stype
(STEqλ)

Ψ ` τ = τ ′ :: type Ψ, x:τ ` A = B :: K

Ψ ` λx:τ.A = λx:τ ′.B :: Πx:τ.K

(STEqApp)

Ψ ` A = B :: Πx:τ.K Ψ `M = N : τ

Ψ ` AM = BN :: K{M/x}
(STEqβ)

Ψ, x:τ ` A :: K Ψ `M : τ

Ψ ` (λx:τ.A)M = A{M/x} :: K{M/x}

(STEqη)

Ψ ` A :: Πx:τ.K x 6∈ fv(A)

Ψ ` λx:τ.Ax = A :: Πx:τ.K

(STEqTλ)

Ψ ` K1 = K2 Ψ, t::K1 ` A = B :: K3

Ψ ` λt::K1.A = λt::K2.B :: Πx:K1.K3

(STEqTApp)

Ψ ` A = C :: Πt::K1.K2 Ψ ` B = D : K1

Ψ ` AB = C D :: K2{B/t}
(STEqTβ)

Ψ, t::K ` A :: K ′ Ψ ` B :: K

Ψ ` (λt::K.A)B = A{B/t} :: K ′{B/t}

(STEqConv)

Ψ ` A = B :: K Ψ ` K = K ′

Ψ ` A = B :: K ′

24

A.9 Definitional Equality for λ-Terms

(TMEqR)

Ψ `M : τ

Ψ `M = M : τ

(TMEqS)

Ψ ` N = M : τ

Ψ `M = N : τ

(TMEqT)

Ψ `M = N ′ : τ Ψ ` N ′ = N : τ

Ψ `M = N : τ

(TMEqVar)

Ψ ` x:τ ∈ Ψ
Ψ ` x = x : τ

(TMEqλ)

Ψ ` λx:τ.M : Πx:τ.σ Ψ ` λx:τ ′.N : Πx:τ ′.σ′

Ψ ` Πx:τ.σ = Πx:τ ′.σ′ :: type Ψ, x:τ `M = N : σ

Ψ ` λx:τ.M = λx:τ ′.N : Πx:τ.σ

(TMEqApp)

Ψ `M = M ′ : Πx:τ.σ Ψ ` N = N ′ : τ

Ψ `M N = M ′N ′ : σ{N/x}

(TMEqβ)

[Ψ ` τ :: type] Ψ, x:τ `M : σ Ψ ` N : τ

Ψ ` (λx:τ.M)N = M{N/x} : σ{N/x}
(TMEqη)

Ψ `M : Πx:τ.σ x 6∈ fv(M)

Ψ ` λx:τ.M x = M : Πx:τ.σ

(TMEq{}η)

Ψ `M : {uj :Bj ; di:Ai ` c:A}
Ψ ` {c← (y ←M ;uj ; di; [y ↔ c])← uj ; di} = M : {uj :Bj ; di:Ai ` c:A}
(TMEq{})
[∀i, j.Ψ ` Bj :: stype Ψ ` Ai :: stype] Ψ ;uj :Bj ; di:Ai ` P = Q :: c:A

Ψ ` {c← P ← uj ; di} = {c← Q← uj ; di} : {uj :Bj ; di:Ai ` c:A}
(TMEqConv)

Ψ `M = N : τ Ψ ` τ = σ :: type

Ψ `M = N : σ

25

A.10 Definitional Equality for Processes

(PEqRefl)

Ψ ;Γ ;∆ ` P :: z:A

Ψ ;Γ ;∆ ` P = P :: z:A

(PEqS)

Ψ ;Γ ;∆ ` Q = P :: z:A

Ψ ;Γ ;∆ ` P = Q :: z:A

(PEqT)

Ψ ;Γ ;∆ ` P = Q :: z:A Ψ ;Γ ;∆ ` Q = R :: z:A

Ψ ;Γ ;∆ ` P = R :: z:A

Ψ ;Γ ;∆ ` P :: z:A P −→ Q Ψ ;Γ ;∆ ` Q :: z:A

Ψ ;Γ ;∆ ` P = Q :: z:A

(PEq∀η)
Ψ ;Γ ; d:∀x:τ.A ` c(x).d〈x〉.[d↔ c] = [d↔ c] :: c:∀x:τ.A

(PEqCC∀)
Ψ ;Γ ;∆ ` P :: d:B Ψ, x:τ ;Γ ;∆′, d:B ` Q :: c:A

Ψ ;Γ ;∆,∆′ ` (νd)(P | c(x).Q) = c(x).(νd)(P | Q) :: c:∀x:τ.A

(PEq∀R)

Ψ ;Γ ;∆ ` z(x:τ).P :: z:∀x:τ.A Ψ ;Γ ;∆ ` z(x:τ ′).Q :: z:∀x:τ ′.B
Ψ ` ∀x:τ.A = ∀x:τ ′.B :: stype Ψ, x:τ ;Γ ;∆ ` P = Q :: z:A

Ψ ;Γ ;∆ ` z(x:τ).P = z(x:τ ′).Q :: z:∀x:τ.A

(Other congruence, η and CC rules)

B Type Soundness

We use Ψ ` J to signify any of the judgments Ψ ` K, Ψ ` A :: K, Ψ ` τ :: K
and respective definitional equality judgments. We use Ψ ;Γ ;∆ ` J in a similar
fashion.

Lemma B.1 (Subderivation Properties).

1. Every derivation of Ψ ` J has a proof of Ψ ` as a sub-proof.
2. Every derivation of Ψ, x:τ ` has a proof of Ψ ` τ :: type as a sub-proof.
3. Every derivation of Ψ, t::K ` has a proof of Ψ ` K as a sub-proof.
4. Every derivation of Ψ, x:K ` has a proof of Ψ ` K as a sub-proof.
5. If Ψ ` τ :: K or Ψ ` A :: K then Ψ ` K
6. If Ψ `M : τ then Ψ ` τ :: type
7. If Ψ ;Γ ;∆ ` P :: z:A then Ψ ` A :: stype

Proof. By induction on the given derivation.

Case: Kind well-formedness
Straightforward by induction.

Case: Functional type well-formedness
Straightforward by induction.

Case: Session type well-formedness
Straightforward by induction.

26

Case: Typing for terms
Straightforward by induction. Base-case is immediate.

Case: Typing for processes
Straightforward by induction. Base-cases are immediate.

Case: Kind equivalence
Straightforward, base case is reflexivity (from i.h. for well-formedness).

Case: Type Equivalence
As above.

Case: Session type equivalence
As above.

Lemma B.2 (Weakening). If Ψ ` and Ψ ′ ` and Ψ ⊆ Ψ ′ then:

1. Ψ ` J implies Ψ ′ ` J
2. Ψ ;Γ ;∆ ` J implies Ψ ′;Γ ;∆ ` J

Proof. Straightforward induction on the given derivation.

Lemma 2.1 (Substitution). Let Ψ `M : τ :

1. If Ψ, x:τ, Ψ ′ ` J then Ψ, Ψ ′{M/x} ` J {M/x};
2. If Ψ, x:τ, Ψ ′;Γ ;∆ ` J then Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` J {M/x}

Proof. By induction on the second given derivation. We show only some illus-
trative cases.

Case: TypeAppWF

Ψ, x:τ, Ψ ′ ` τ ′ :: Πy:σ.K and Ψ, x:τ, Ψ ′ `M ′ : σ by inversion
Ψ, Ψ ′ ` τ ′{M/x} :: Πy:σ{M/x}.K{M/x} by i.h.
Ψ, Ψ ′ `M ′{M/x} : σ{M/x} by i.h.
Ψ, Ψ ′ ` τ ′{M/x}M ′{M/x} : K{M ′/y}{M/x} by TypeAppWF

Case: KindConv

Ψ, x:τ, Ψ ′ ` τ :: K and Ψ, x:τ, Ψ ′ ` K = K ′ by inversion
Ψ, Ψ ′ ` τ{M/x} :: K{M/x} by i.h.
Ψ, Ψ ′ ` K{M/x} = K ′{M/x} by i.h.
Ψ, Ψ ′ ` τ{M/x} :: K ′{M/x} by KindConv

Case: Var

Subcase: x = y
Ψ `M : τ by assumption
Ψ, Ψ ′{M/x} `M : τ by weakening
Subcase: x 6= y
Ψ, x:τ, Ψ ′, y:τ ′ ` y:τ ′ by weakening and Var

Case: TEqβ

27

Ψ, x:τ, Ψ ′, y:τ ′ ` σ :: K and Ψ, x:τ, Ψ ′ `M ′ : τ ′ by inversion
Ψ, Ψ ′{M/x}, y:τ ′{M/x} ` σ{M/x} :: K{M/x} by i.h.
Ψ, Ψ ′{M/x} `M ′{M/x} : τ ′{M/x} by i.h.
Ψ, Ψ ′{M/x} ` (λy:τ ′{M/x}.σ{M/x})M ′{M/x} = σ{M/x}{M ′{M/x}/y} :: K{M ′/x}{M{M/x}/y}

by TEqβ

Case: TEqη

Ψ, x:τ, Ψ ′ ` σ :: Πy:τ ′.K and y 6∈ fv(σ) by inversion
Ψ, Ψ ′{M/x} ` σ{M/x} :: Πy:τ ′{M/x}.K{M/x} by i.h
Ψ, Ψ ′{M/} ` λy:τ ′{M/x}.(σ{M/x} y) = σ{M/x} :: Πy:τ ′{M/x}.K{M/x} by TEqη

Case: PEqRed

Ψ, x:τ, Ψ ′;Γ ;∆ ` P :: z:A, P −→∗ Q and Ψ, x:τ, Ψ ′;Γ ;∆ ` Q :: z:A by inversion
Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} :: z:A{M/x} by i.h.
Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` Q{M/x} :: z:A{M/x} by i.h.
P{M/x} −→∗ Q{M/x} by compatibility of reduction with substitution
Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} = Q{M/x} :: z:A{M/x} by PEqRed

Lemma B.3 (Type Substitution).

1. If Ψ ` τ :: K and Ψ, t::K,Ψ ′ ` J then Ψ, Ψ ′{τ/t} ` J {τ/t};
2. If Ψ ` τ :: K and Ψ, t::K,Ψ ′;Γ ;∆ ` J then Ψ, Ψ ′{τ/t};Γ{τ/t};∆{τ/t} `
J {τ/t}

3. If Ψ ` A :: K and Ψ, t::K,Ψ ′ ` J then Ψ, Ψ ′{A/t} ` J {A/t};
4. If Ψ ` A :: K and Ψ, t::K,Ψ ′;Γ ;∆ ` J then Ψ, Ψ ′{A/t};Γ{A/t};∆{A/t}

Lemma B.4 (Context Conversion).
Let Ψ, x:τ ` and Ψ ` τ ′ :: K. If Ψ, x:τ ` J and Ψ ` τ = τ ′ :: K then

Ψ, x:τ ′ ` J .

Proof. Straightforward from the properties above.

Ψ, x:τ ′ ` x:τ ′ by variable rule
Ψ ` τ ′ = τ :: K by symmetry
Ψ, x:τ ′ ` x:τ by conversion
Ψ, x′:τ ` α{x′/x} renaming assumption
Ψ, x:τ ′, x′:τ ` α{x′/x} by weakening
Ψ, x:τ ′ ` α{x′/x}{x/x′} by substitution
Ψ, x:τ ′ ` α by definition

Lemma B.5 (Context Conversion – Processes). Let Ψ, x:τ ;∆ `, Ψ, x:τ ;Γ `
and Ψ ` τ :: type. If Ψ, x:τ ;Γ ;∆ ` J and Ψ ` τ = τ ′ :: type then Ψ, x:τ ′;Γ ;∆ `
J

Proof. Straightforward by Lemma B.4.

Lemma B.6 (Context Conversion – Types). Let Ψ, t::K ` and Ψ ` K ′. If
Ψ, t::K ` J and Ψ ` K = K ′ then Ψ, t::K ′ ` J

28

Proof. Identical to Lemma B.4

Lemma B.7 (Functionality of Typing).
Assume Ψ `M = N : τ , Ψ `M : τ and Ψ ` N : τ :

1. If Ψ, x:τ, Ψ ′ `M ′ : τ ′ then Ψ, Ψ ′{M/x} `M ′{M/x} = M ′{N/x} : τ ′{M/x}
2. If Ψ, x:τ, Ψ ′ ` τ ′ :: K then Ψ, Ψ ′{M/x} ` τ ′{M/x} = τ ′{N/x} :: K{M/x}
3. If Ψ, x:τ, Ψ ′ ` A :: K then Ψ, Ψ ′{M/x} ` A{M/x} = A{N/x} :: K{M/x}
4. If Ψ, x:τ, Ψ ′;Γ ;∆ ` P :: z:A then Ψ ;Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} =

P{N/x} :: z:A{N/x}
5. If Ψ, x:τ, Ψ ′ ` K then Ψ, Ψ ′{M/x} ` K{M/x} = K{N/x}

Proof. By induction on the given typing derivation.

Case: Ψ, x:τ, Ψ ′ ` x:τ by variable rule

Ψ `M = N : τ by assumption
Ψ, Ψ ′{M/x} `M = N : τ by weakening

Case: Ψ, x:τ, Ψ ′ ` y:σ with y:σ ∈ Ψ or Ψ ′

y : σ ∈ Ψ or y:σ{M/x} ∈ Ψ ′{M/x} by definition
Ψ, Ψ ′{M/x} ` y = y : σ{M/x} by reflexivity

Case: Ψ, x:τ, Ψ ′ `M0N0 : σ0{N0/y} from ΠE

Ψ, Ψ ′{M/x} `M0{M/x} = M0{N/x} : Πy:σ1{M/x}.σ0{M/x} by i.h.
Ψ, Ψ ′{M/x} ` N0{M/x} = N0{N/x} : σ1{M/x} by i.h.
Ψ, Ψ ′{M/x} `M0{M/x}N0{M/x} = M0{N/x}N0{N/x} : (σ0{M/x}){(N0{M/x})/y}

by TMEqApp rule

Case: Ψ, x:τ, Ψ ′ ` λy:τ0.M0 : Πy:τ0.τ1 by ΠI rule

Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: type by i.h.
Ψ, Ψ ′{M/x}, y:τ0{M/x} `M0{M/x} = M0{N/x} : τ1{M/x} by i.h.
Ψ, Ψ ′{M/x} ` τ0{M/x} :: type by substitution lemma
Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{M/x} :: type by reflexivity
Ψ, Ψ ′{M/x} ` τ0{N/x} = τ0{M/x} :: type by symmetry
Ψ, Ψ ′{M/x} ` λy:τ0{M/x}.M0{M/x} = λy:τ0{N/x}.M0{N/x} : Πy:τ0{M/x}.τ1{M/x}

by TMEqλ rule

Case: Ψ, x:τ, Ψ ′ ` {c← P ← uj ; di} : {Γ ;∆ ` c:A} by {}I

Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} = P{N/x} :: c:A{M/x} by i.h.

Ψ, Ψ ′{M/x} ` Aj{M/x} :: stype by substitution lemma

Ψ, Ψ ′{M/x} ` Bi{M/x} :: stype by substitution lemma
Conclude by TMEq{} rule

29

Case: Ψ, x:τ, Ψ ′ `M0 : τ0 by conversion rule

Ψ, Ψ ′{M/x} `M0{M/x} = M0{N/x} : τ ′0{M/x} by i.h.
Ψ, Ψ ′{M/x} ` τ0{M/x} = τ ′0{M/x} :: type by substitution lemma
Ψ, Ψ ′{M/x} `M0{M/x} = M0{N/x} : τ0{M/x} by conversion rule

Case: Ψ, x:τ, Ψ ′ ` Πy:τ0.τ1 :: type by Π formation rule

Ψ, Ψ ′{M/x} ` τ0{M/x} :: type by substitution
Ψ, Ψ ′{M/x}, y:τ0{M/x} ` τ1{M/x} = τ1{N/x} :: type by i.h.
Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: type by i.h.
Ψ, Ψ ′{M/x} ` Πy:τ0{M/x}.τ1{M/x} = Πy:τ0{N/x}.τ1{N/x} :: type

by Π formation rule

Case: Ψ, x:τ, Ψ ′ ` λy:τ0.σ :: Πy:τ0.K0 by λ formation rule

Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: type by i.h.
Ψ, Ψ ′{M/x}, y:τ0{M/x} ` σ{M/x} = σ{N/x} :: K0{M/x} by i.h.
Ψ, Ψ ′{M/x} ` λy:τ0{M/x}.σ{M/x} = λy:τ0{N/x}.σ{N/x} :: Πy:τ0{M/x}.K0{M/x}

by λ formation rule

Case: Ψ, x:τ, Ψ ′ ` τ0M0 :: K0{M/y} by type application formation rule

Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: Πy:τ1{M/x}.K0{M/x} by i.h.
Ψ, Ψ ′{M/x} `M0{M/x} = M0{N/x} : τ1{M/x} by i.h.
Ψ, Ψ ′{M/x} ` τ0{M/x}M0{M/x} = τ0{M/x}M0{M/x} :: K0{M0/y}{M/x}

by type app. formation rule and def. of substitution

Case: {} formation rule

Straightforward by i.h.

Case: Ψ, x:τ, Ψ ′ ` τ0 :: K0 by conversion rule

Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: K1{M/x} by i.h.
Ψ, Ψ ′{M/x} ` K1{M/x} = K0{M/x} by substitution lemma
Ψ, Ψ ′{M/x} ` τ0{M/x} = τ0{N/x} :: K0{M/x} by conversion

Case: Ψ, x:τ, Ψ ′;Γ ;∆ ` c〈M0〉.P0 :: c:∃y:τ0.A0 by ∃R

Ψ, Ψ ′{M/x} `M0{M/x} = M0{N/x} : τ0{M/x} by i.h.
Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P0{M/x} = P0{N/x} :: c:A0{M0/y}{M/x}

by i.h.
Conclude by PEq∃R

Case: Ψ, x:τ, Ψ ′;Γ ;∆, y:∃w:σ.A ` y(w:σ).P0 :: z:C by ∃L

Ψ, Ψ ′{M/x}, w:σ{M/x};Γ{M/x};∆{M/x}, y:A{M/x} ` P0{M/x} = P0{N/x} :: z:C{M/x}
by i.h.

Ψ, Ψ ′{M/x} ` σ{M/x} :: type by substitution lemma
Conclude by PEq∃L

30

Case: Ψ, x:τ, Ψ ′;Γ ;∆ ` P :: z:B by ConvR

Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} = P{N/x} :: z:A{M/x} by i.h.
Ψ, Ψ ′{M/x} ` A{M/x} = B{M/x} :: stype by substitution lemma
Ψ, Ψ ′{M/x};Γ{M/x};∆{M/x} ` P{M/x} = P{N/x} :: z:B{M/x}

by conversion

Remaining cases follow similar patterns, relying on the inductive hypothesis
and the substitution lemmata.

We omit the analogue functionality property for type substitution.

Lemma B.8 (Inversion for Products).

1. If Ψ ` Πx:τ.σ :: K then Ψ ` τ :: type and Ψ, x:τ ` σ :: type
2. If Ψ ` Πx:τ.K then Ψ ` τ :: type and Ψ, x:τ ` K

Proof. (1) follows straightforwardly by induction on the given derivation. (2) is
immediate by inversion.

Lemma B.9 (Inversion for ∀∃).

1. If Ψ ` ∀x:τ.A :: K then Ψ ` τ :: type and Ψ, x:τ ` A :: stype
2. If Ψ ` ∃x:τ.A : K then Ψ ` τ :: type and Ψ, x:τ ` A :: stype

Proof. Straightforwardly by induction on the given derivation.

Lemma 2.3 (Validity for Equality).

1. If Ψ `M = N : τ then Ψ `M : τ , Ψ ` N : τ and Ψ ` τ :: type
2. If Ψ ` τ = σ :: K then Ψ ` τ :: K, Ψ ` σ :: K and Ψ ` K
3. If Ψ ` A = B :: K then Ψ ` A :: K, Ψ ` B :: K and Ψ ` K
4. If Ψ ` K = K ′ then Ψ ` K and Ψ ` K ′
5. If Ψ ;Γ ;∆ ` P = Q :: z:A then Ψ ;Γ ;∆ ` P :: z:A, Ψ ;Γ ;∆ ` Q :: z:A and

Ψ ` A :: stype

Proof. By simultaneous induction on the given derivation.

Case: TMEqR

Ψ `M : τ by inversion
Ψ ` τ :: type by subderivation lemma

Case: TMEqS and TMEqT

Immediate by i.h.

Case: TMEqλ

31

Ψ ` λx:τ.M : Πx:τ.σ, Ψ ` λx:τ ′.N : Πx:τ ′.σ′, Ψ ` Πx:τ.σ = Πx:τ ′.σ′ :: type
and Ψ, x:τ `M = N : σ by inversion
Ψ, x:τ `M : σ, Ψ, x:τ ` N : σ and Ψ, x:τ ` σ :: type by i.h.
Ψ ` Πx:τ.σ :: type, Ψ ` Πx:τ ′.σ′ :: type and Ψ ` type by i.h.
Ψ ` λx:τ.M : Πx:τ.σ by (ΠI)
Ψ ` λx:τ ′.N : Πx:τ ′.σ′ by (ΠI)
Ψ ` λx:τ ′.N : Πx:τ.σ by conversion (and symmetry)

Case: TMEqApp

Ψ `M = M ′ : Πx:τ.σ and Ψ ` N = N ′ : τ by inversion
Ψ `M : Πx:τ.σ, Ψ `M ′ : Πx:τ.σ and Ψ ` Πx:τ.σ :: type by i.h.
Ψ ` N : τ , Ψ ` N ′ : τ and Ψ ` τ :: type by i.h.
Ψ, x:τ ` σ :: type by inversion for products
Ψ ` σ{N/x} :: type by substitution
Ψ `M N : σ{N/x} by (ΠE)
Ψ `M ′N ′ : σ{N ′/x} by (ΠE)
Ψ ` σ{N/x} = σ{N ′/x} :: type by functionality
Ψ `M ′N ′ : σ{N/x} by conversion (and symmetry)

Case: TMEqβ

Ψ ` λx:τ.M : Πx:τ.σ, Ψ ` N : τ and Ψ, :τ `M : σ by inversion
Ψ ` (λx:τ.M)N : σ{N/x} by (ΠE)
Ψ ` Πx:τ.σ :: type by subderivation lemma
Ψ ` τ :: type and Ψ, x:τ ` σ :: type by inversion for products
Ψ ` σ{N/x} :: type by substitution
Ψ `M{N/x} : σ{N/x} by substitution

Case: TMEqη

Ψ `M : Πx:τ.σ by inversion
Ψ ` λx:τ.(M x) : Πx:τ, σ by (ΠE), (var) and (ΠI)
Ψ ` Πx:τ.σ :: type by subderivation lemma

Case: TMEq{}

Ψ ;Γ ;∆ ` P = Q :: c:A by inversion
Ψ ;Γ ;∆ ` P :: c:A, Ψ ;Γ ;∆ ` Q :: c:A and Ψ ` A :: stype by i.h.
Ψ ` {c← P ← . . . } : {Γ ;∆ ` c:A} by {}I
Ψ ` {c← Q← . . . } : {Γ ;∆ ` c:A} by {}I
Ψ ;Γ ` and Ψ ;∆ ` by subderivation lemma
Ψ ` {Γ ;∆ ` c:A} by {} well-formedness

Case: TMEq{}η

Ψ `M : {Γ ;∆ ` c:A} by inversion
Ψ ` {Γ ;∆ ` c:A} by subderivation lemma
Typing follows straightforwardly

32

Case: TEqR

Straightforward by subderivation lemma.

Case: TEqS and TEqT

Straightforward by i.h.

Case: TEqΠ

Ψ ` τ = τ ′ :: type and Ψ, x:τ ` σ = σ′ :: type by inversion
Ψ ` τ :: type, Ψ ` τ ′ :: type and Ψ ` type by i.h.
Ψ, x:τ ` σ :: type, Ψ, x:τ ` σ′ :: type and Ψ, x:τ ` type by i.h.
Ψ ` Πx:τ.σ :: type Π rule
Ψ, x:τ ′ ` σ′ :: type by context conversion
Ψ ` Πx:τ.σ′ :: type by Π rule

Case: TEqλ

Ψ ` τ = τ ′ :: type and Ψ, x:τ ` σ = σ′ :: K by inversion
Ψ ` τ :: type, Ψ ` τ ′ :: type and Ψ ` type by i.h.
Ψ, x:τ ` σ :: K, Ψ, x:τ ` σ′ :: K and Ψ, x:τ ` K by i.h.
Ψ ` λx:τ.σ :: Πx:τ.K by λ rule
Ψ, x:τ ′ ` σ′ :: K by context conversion
Ψλx:τ ′.σ′ :: Πx:τ ′.K by λ rule
Ψ ` λx:τ ′.σ′ :: Πx:τ.K by conversion
Ψ ` Πx:τ.K by Π well-formedness rule

Case: TEqApp

Ψ ` τ = σ :: Πx:τ ′.K and Ψ `M = N : τ ′ by inversion
Ψ ` τ :: Πx:τ ′.K, Ψ ` σ :: Πx:τ ′.K and Ψ ` Πx:τ ′.K by i.h.
Ψ `M : τ ′, Ψ ` N : τ ′ and Ψ ` τ ′ :: type by i.h.
Ψ ` τ M : K{M/x} by app. wf rule
Ψ ` σN : K{N/x} by app. wf rule
Ψ, x:τ ′ ` K by inversion for products
Ψ ` K{M/x} = K{N/x} by functionality
Ψ ` σN : K{M/x} by conversion
Ψ ` K{M/x} by substitution

Case: TEqβ

Ψ, x:τ ` σ :: K and Ψ `M : τ by inversion
Ψ ` λx:τ.σ :: Πx:τ.K by Π rule
Ψ ` (λx:τ.σ)M :: K{M/x} by app. rule
Ψ ` σ{M/x} :: K{M/x} by substitution
Ψ, x:τ ` K by subderivation lemma
Ψ ` K{M/x} by substitution

33

Case: TEqη

Ψ ` σ :: Πx:τ.K by inversion
Ψ ` λx:τ.(σ x) :: Πx:τ.K by wf rules
Ψ ` Πx:τ.K by subderivation lemma

Case: TEq{}

Straightforward by i.h.

Case: (3) is identical to (2), appealing to inversion for ∀∃ as needed.
Case: PEqRefl

Immediate + subderivation lemma.

Case: PEqT and PEqS

i.h.

Case: PEqRed

Ψ ;Γ ;∆ ` P :: z:A, P −→ Q and Ψ ;Γ ;∆ ` Q :: z:A by inversion
Ψ ` A :: stype by subderivation lemma

Case: PEq∀R

Straightforward by i.h.

Case: PEq∀L

Ψ `M0 = M1 : τ and Ψ ;Γ ;∆,x:A{M0/y} ` P0 = Q0 :: z:C by inversion
Ψ ;Γ ;∆,x:A{M0/y} ` P0 :: z:C, Ψ ;Γ ;∆,x:A{M0/y} ` Q0 :: z:C
and Ψ ` C :: stype by i.h.
Ψ `M0 : τ , Ψ `M1 : τ and Ψ ` τ :: type by i.h.
Ψ ;Γ ;∆,x:∀y:τ.A ` x〈M0〉.P0 :: z:C by ∀L
Ψ ;∆,x:∀y:τ.A ` by subderivation lemma
Ψ ` ∀y:τ.A :: stype by definition
Ψ, y:τ ` A :: stype by inversion for ∀∃
Ψ ` A{M0/y} = A{M1/y} :: stype by functionality
Ψ ` A{M1/y} :: stype by substitution
Ψ ;Γ ;∆,x:A{M1/y} ` Q0 :: z:C by context conversion rule
Ψ ;Γ ;∆,x:∀y:τ.A ` x〈M1〉.Q0 :: z:C by ∀L

Case: PEqConvR

Ψ ;Γ ;∆ ` P = Q :: z:A and Ψ ` A = B :: stype by inversion
Ψ ;Γ ;∆ ` P :: z:A, Ψ ;Γ ;∆ ` Q :: z:A,
Ψ ` A :: stype and Ψ ` B :: stype by i.h.
Ψ ;Γ ;∆ ` P :: z:B by PEqConvR
Ψ ;Γ ;∆ ` Q :: z:B by PEqConvR

34

Remaining cases are identical.

Theorem B.10 (Functionality for Equality). Assume Ψ `M = N : τ :

1. If Ψ, x:τ `M0 = M1 : σ then Ψ `M0{M/x} = M1{N/x} : σ{M/x}
2. If Ψ, x:τ ` σ1 = σ2 :: K then Ψ ` σ1{M/x} = σ2{N/x} :: K{M/x}
3. If Ψ, x:τ ` A = B :: K then Ψ ` A{M/x} = B{N/x} :: K{M/x}
4. If Ψ, x:τ ` K1 = K2 then Ψ ` K1{M/x} = K2{N/x}
5. If Ψ, x:τ ;Γ ;∆ ` P = Q :: z:A then Ψ ;Γ{M/x};∆{M/x} ` P{M/x} =

Q{N/x} :: z:A{M/x}

Proof. (1)

Ψ, x:τ `M0 = M1 : σ assumption
Ψ `M = N : τ assumption
Ψ `M : τ , Ψ ` N : τ and Ψ ` τ :: type by validity
Ψ, x:τ `M0 : σ, Ψ, x:τ `M1 : σ and Ψ, x:τ ` σ :: type by validity
Ψ `M0{M/x} = M1{M/x} : σ{M/x} by substitution
Ψ `M1{M/x} = M1{N/x} : σ{M/x} by functionality
Ψ `M0{M/x} = M1{N/x} : σ{M/x} by transitivity

(2)

Ψ, x: : τ ;Γ ;∆ ` P = Q :: z:A assumption
Ψ `M = N : τ assumption
Ψ `M : τ , Ψ ` N : τ and Ψ ` τ :: type by validity
Ψ, x:τ ;Γ ;∆ ` P :: z:A, Ψ, x:τ ;Γ ;∆ ` Q :: z:A
and Ψ, x:τ ` A :: stype by validity
Ψ ;Γ{M/x};∆{M/x} ` P{M/x} = Q{M/x} :: z:A{M/x} by substitutition
Ψ ;Γ{M/x};∆{M/x} ` Q{M/x} = Q{N/x} :: z:A{M/x} by functionality
Ψ ;Γ{M/x};∆{M/x} ` P{M/x} = Q{N/x} :: z:A{M/x} by transitivity

Remaining cases are identical, appealing to validity, substitution and func-
tionality of typing.

We omit the analogue functionality property for type substitution.

Lemma B.11 (Inversion).

1. If Ψ ` x:τ then x:σ ∈ Ψ with Ψ ` τ = σ :: type
2. If Ψ `M1M2 : σ then Ψ `M1 : Πx:τ1.τ2, Ψ `M2 : τ1 and Ψ ` σ{M2/x} =

τ2 :: type
3. If Ψ ` λx:τ.M : σ then Ψ ` σ = Πx:τ.σ′ :: type, Ψ ` τ :: type and Ψ, x:τ `

M : σ′

4. If Ψ ` Πx:τ1.τ2 :: K then Ψ ` K = type, Ψ ` τ1 :: type and Ψ, x:τ1 ` τ2 ::
type

5. If Ψ ` λx:τ.σ :: K then Ψ ` K = Πx:τ.K ′, Ψ ` τ :: type and Ψ, x:τ ` σ :: K ′

6. If Ψ ` τ M :: K then Ψ ` τ :: Πx:τ0.K1, Ψ `M : τ0 and Ψ ` K = K1{M/x}

35

7. If Ψ ` λt::K.τ :: K ′ then Ψ ` K ′ = Πt::K.K ′′, Ψ ` K and Ψ, t::K ` τ :: K ′′

8. If Ψ ` τ σ :: K then Ψ ` τ :: Πt::K0.K1, Ψ ` σ : K0 and Ψ ` K = K1{σ/t}
9. If Ψ ` Πx:τ.K then Ψ ` τ :: type and Ψ, x:τ ` K

10. If Ψ ` Πt::K1.K2 then Ψ ` K1 and Ψ, t::K1 ` K2

11. If Ψ ` {Γ ;∆ ` c:A} :: K then Ψ ` K = type, Ψ ` Γ :: stype, Ψ ` ∆ :: stype
and Ψ ` A :: stype

12. If Ψ ;Γ ;∆ ` z(x:τ).P :: z:A then Ψ ` A = ∀x:τ.A′ and Ψ ` τ :: stype and
Ψ, x:τ ;Γ ;∆ ` P :: z:A′

13. If Ψ ;Γ ;∆,x:A ` x〈M〉∀x:τ.A′ .P :: z:C then Ψ ` A = ∀y:τ.A′ :: stype, Ψ `
τ :: type, Ψ `M : τ and Ψ ;Γ ;∆,x:A′{M/y} ` P :: z:C

14. If Ψ ;Γ ;∆ ` z〈M〉∃x:τ.A′ .P :: z:A then Ψ ` A = ∃x:τ.A′ :: stype, Ψ ` τ :: type
and Ψ, y:τ ;Γ ;∆,x:A′ ` P :: z:C

15. If Ψ ` ∀x:τ.A :: K then Ψ ` K = stype, Ψ ` τ :: type, Ψ, x:τ ` A :: stype
16. If Ψ ` ∃x:τ.A :: K then Ψ ` K = stype, Ψ ` τ :: type, Ψ, x:τ ` A :: stype
17. If Ψ ` λx:τ.A :: K then Ψ ` K = Πx:τ.K ′, Ψ ` τ :: type and Ψ, x:τ ` A :: K ′

18. If Ψ ` AM :: K then Ψ ` A :: Πx:τ0.K
′, Ψ `M : τ0 and Ψ ` K = K ′{M/x}

19. If Ψ ` λt::K.A :: K ′ then Ψ ` K ′ = Πt::K.K ′′, Ψ ` K and Ψ, t::K ` A :: K ′′

20. If Ψ ` AB :: K then Ψ ` A :: Πt:K0.K1, Ψ ` B :: K0 and Ψ ` K =
K1{B/t}

Proof. By induction on the given derivation. Most cases require validity.

Theorem B.12 (Equality Inversion).

1. If Ψ ` τ = Πx:τ0.τ1 :: type then Ψ ` τ = Πx:σ0.σ1 :: type with Ψ ` σ0 =
τ0 :: type and Ψ, x:σ0 ` σ1 = τ1 :: type

2. If Ψ ` K = type then K = type
3. If Ψ ` K = Πx:τ0.K

′ then Ψ ` K = Πx:σ0.K
′′ with Ψ ` σ0 = τ0 :: type and

Ψ, x:σ0 ` K ′′ = K ′

4. If Ψ ` K = Πt::K1.K2 then Ψ ` K = Πt::K ′1.K
′
2 with Ψ ` K ′1 = K1 and

Ψ, t::K ′1 ` K ′2 = K2

5. Ψ ` A = ∀x:τ0.A0 :: stype then Ψ ` A = ∀x:σ0.B0 :: stype with Ψ ` σ0 =
τ0 :: type and Ψ, x:σ0 ` B0 = A0 :: stype

6. Ψ ` A = ∃x:τ0.A0 :: stype then Ψ ` A = ∃x:σ0.B0 :: stype with Ψ ` σ0 =
τ0 :: type and Ψ, x:σ0 ` B0 = A0 :: stype

7. Ψ ` τ = λx:τ0.σ :: K then Ψ ` τ = λx:τ1.σ
′ :: Πx:τ1.K0 with Ψ ` τ1 = τ0 ::

type and Ψ, x:τ1 ` σ′ = σ :: K0, for some K0

8. Ψ ` τ = τ0M :: K then Ψ ` τ = τ1N :: K with Ψ ` τ1 = τ0 :: Πx:σ.K0,
Ψ ` N = M : σ and K = K0{N/x}

9. Ψ ` τ = λt::K.σ :: K ′ then Ψ ` τ = λt::K0.σ
′ :: Πt::K0.K

′′ with Ψ ` K0 =
K and Ψ, t::K0 ` σ′ = σ :: K ′′, for some K ′′

10. Ψ ` τ = τ0 σ0 :: K then Ψ ` τ = τ1 σ1 :: K with Ψ ` τ1 = τ0 :: Πt::K1.K0,
Ψ ` σ1 = σ0 :: K1 and K = K0{σ1/t}

11. Ψ ` A = λx:τ0.A0 :: K then Ψ ` A = λx:τ1.A
′
0 :: Πx:τ1.K0 with Ψ ` τ1 =

τ0 :: type and Ψ, x:τ1 ` A′0 = A0 :: K0, for some K0

12. Ψ ` A = A0M :: K then Ψ ` A = A1N with Ψ ` A1 = A0 :: Πx:σ.K0,
Ψ ` N = M : σ and K = K0{N/x}

36

13. Ψ ` B = λt::K.A :: K ′ then Ψ ` B = λt::K0.A
′ :: Πt::K0.K

′′ with Ψ ` K0 =
K and Ψ, t::K0 ` A′ = A :: K ′′, for some K ′′

14. Ψ ` A = A0B0 :: K then Ψ ` A = A1B1 :: K with Ψ ` A1 = A0 ::
Πt::K1.K0, Ψ ` B1 = B0 :: K1 and K = K0{B1/t}

Proof. By induction on the given equality derivations.
(1)

Case: TEqT

Ψ ` τ = τ ′ :: type and Ψ ` τ ′ = Πx:τ0.τ1 :: type assumption
τ ′ = Πx:τ ′0.τ

′
1 with Ψ ` τ ′0 = τ0 :: type and Ψ, x:τ ′0 ` τ ′1 = τ1 :: type by i.h.

τ = Πx:σ0.σ1 with Ψ ` σ0 = τ ′0 :: type and Ψ, x:σ0 ` σ1 = τ ′1 :: type by i.h.
Ψ ` σ0 = τ0 :: type by transivitity
Ψ, x:σ0 ` τ ′1 = τ1 :: type by context conversion
Ψ, x:σ0 ` σ1 = τ1 :: type by transitivity

Case: TEqβ

Ψ, y:τ ` σ :: type and Ψ `M : τ , K{M/y} = type and
Πx:τ0.τ1 = σ{M/y} by inversion
Ψ ` (λy:τ.σ)M = Πx:τ0.τ1 :: type assumption
σ = Πx:τ.σ by definition of substitution
Ψ, y:τ ` Πx:τ.σ :: type by def.
Ψ ` (λy:τ.σ)M = Πx:τ.σ{M/y} :: type by rule
Ψ ` τ :: type by validity
Ψ ` τ = τ :: type by reflexivity
Ψ ` σ{M/y} :: type by substitution
Ψ ` σ{M/y} = σ{M/y} :: type by reflexivity

The other cases follow similar patterns.

Lemma B.13 (Injectivity of Products).

1. If Ψ ` Πx:τ.σ = Πx:τ ′.σ′ :: type then Ψ ` τ = τ ′ :: type and Ψ, x:τ ` σ =
σ′ :: type

2. If Ψ ` Πx:τ1.K1 = Πx:τ2.K2 then Ψ ` τ1 = τ2 :: type and Ψ, x:τ1 ` K1 = K2

3. If Ψ ` ∀x:τ1.A1 = ∀x:τ2.A2 :: stype then Ψ ` τ1 = τ2 :: type and Ψ, x:τ1 `
A1 = A2 :: stype

Proof. By equality inversion.

Theorem 2.4 (Unicity of Types and Kinds).

1. If Ψ `M : τ and Ψ `M : τ ′ then Ψ ` τ = τ ′ :: type
2. If Ψ ` τ :: K and Ψ ` τ :: K ′ then Ψ ` K = K ′

3. If Ψ ;Γ ;∆ ` P :: z:A and Ψ ;Γ ;∆ ` P :: z:A′ then Ψ ` A = A′ :: stype
4. If Ψ ` A :: K and Ψ ` A :: K ′ then Ψ ` K = K ′

37

Proof. By induction on the structure of the given term/type/process.

Case: M is λx:τ0.M
′

Ψ, x:τ0 `M ′ : σ, Ψ, x:τ0 `M ′ : σ′ with Ψ ` τ = Πx:τ0.σ :: type,
Ψ ` τ0 :: type and Ψ ` τ ′ = Πx:τ0.σ

′ :: type by inversion
Ψ, x:τ0 ` σ = σ′ :: type by i.h.
Ψ ` Πx:τ0.σ = Πx:τ0.σ

′ :: type by TEqΠ rule

Case: M is M ′N ′

Ψ `M ′N ′ : τ and Ψ `M ′N ′ : τ ′ assumption
Ψ `M ′ : Πx:τ0.σ0 and Ψ `M ′ : Πx:τ ′0.σ

′
0 with Ψ ` τ = σ0{N ′/x} :: type,

Ψ ` N ′ : τ0, Ψ ` N ′ : τ ′0 and Ψ ` τ ′ = σ′0{N ′/x} :: type by inversion
Ψ ` Πx:τ0.σ0 = Πx:τ ′0.σ

′
0 :: type by i.h.

Ψ ` τ0 = τ ′0 :: type by i.h.
Ψ, x:τ0 ` σ0 = σ′0 :: type by injectivity
Ψ ` σ0{N ′/x} = σ′0{N ′/x} :: type by functionality

Case: M is {c← P ← uj ; di}
Ψ `M : {Γ ;∆ ` c:A} and Ψ `M : {Γ ;∆ ` c:A′} assumption
Ψ ;Γ ;∆ ` P :: c:A and Ψ ;Γ ;∆ ` P :: c:A′ by inversion
Ψ ` A = A′ :: stype by i.h.
Conclude by reflexivity and TEq{}

Case: M is x
Direct by inversion lemma.
(2)

Case: τ is Πx:τ0.σ0

Ψ ` Πx:τ0.σ0 :: K and Ψ ` Πx:τ0.σ0 :: K ′ assumption
Ψ, x:τ0 ` σ0 :: type and Ψ, x:τ0 ` σ0 :: type and K = K ′ = type

by inversion lemma

Case: τ is λx:τ0.σ0

Ψ ` λx:τ0.σ0 :: K and Ψ ` λx:τ0.σ0 :: K ′ assumption
Ψ, x:τ0 ` σ0 :: K0, Ψ, x:τ0 ` σ0 :: K ′0, Ψ ` τ0 :: type
with K = Πx:τ0.K0 and K ′ = Πx:τ0.K

′
0 by inversion lemma

Ψ, x:τ0 ` K0 = K ′0 by i.h.
Ψ ` Πx:τ0.K0 = Πx:τ0.K

′
0 by rule

Case: τ is τ0M

Ψ ` τ0M :: K and Ψ ` τ0M :: K ′ assumption
Ψ ` τ0 :: Πx:σ.K0 and Ψ ` τ0 :: Πx:σ′.K ′0, Ψ `M : σ and Ψ `M : σ′

with K = K0{M/x} and K ′ = K ′0{M/x} by inversion lemma
Ψ ` Πx:σ.K0 = Πx:σ′.K ′0 by i.h.
Ψ ` σ = σ′ :: type by i.h.
Ψ, x:σ ` K0 = K ′0 by injectivity
Ψ ` K0{M/x} = K ′0{M/x} by substitution

38

Case: τ is {Γ ;∆ ` c:A}
Straightforward by i.h.
(3)

Case: P is z(x).P0

Ψ ;Γ ;∆ ` z(x:τ0).P0 :: z:A and Ψ ;Γ ;∆ ` z(x:τ0).P0 :: z:A′ assumption
A = ∀x:τ0.A0, A′ = ∀x:τ0.A

′
0, Ψ, x:τ0;Γ ;∆ ` P0 :: z:A0,

Ψ, x:τ0;Γ ;∆ ` P0 :: z:A′0, and Ψ ` τ0 :: type by inversion lemma
Ψ, x:τ0 ` A0 = A′0 by i.h.
Ψ ` ∀x:τ0A0 = ∀x:τ0A

′
0 by rule

Case: P is x〈M〉∀x:τ0.A0 .P0

Ψ ;Γ ;∆,x:A ` x〈M〉∀x:τ0.A0 .P0 :: z:C and
Ψ ;Γ ;∆,x:A ` x〈M〉.P0 :: z:C assumption
A = ∀x:τ0.A0, Ψ `M : τ0, Ψ ;Γ ;∆,x:A0{M/x} ` P0 :: z:C
and Ψ ;Γ ;∆,x:A0{M/x} ` P0 :: z:C ′ by inversion lemma
Ψ ` C = C ′ :: stype by i.h.

Case: P is z〈M〉∃x:τ0.A0
.P0

Ψ ;Γ ;∆ ` z〈M〉.P0 :: z:A and Ψ ;Γ ;∆ ` z〈M〉.P0 :: z:A′ assumption
A = ∃x:τ0.A0, A′ = ∃x:τ0.A0, Ψ `M : τ0,
Ψ ;Γ ;∆ ` P0 :: z:A0{M/x} and Ψ ;Γ ;∆ ` P0 :: z:A0{M/x}

by inversion lemma

Remaining cases follow similarly.

Theorem B.14. If Ψ `M : τ and M −→M ′ then Ψ `M = M ′ : τ

Proof. By induction on −→ relation.

Case:
M −→M ′

M N −→M ′N

Ψ `M : Πx:τ0.σ0, Ψ ` τ0 :: type, Ψ ` N : τ0 and Ψ `M N : σ0{N/x}
by inversion lemma

Ψ `M = M ′ : Πx:τ0.σ0 by i.h.
Ψ ` Πx:τ0.σ0 :: type by validity
Ψ ` N = N : τ0 by reflexivity
Ψ `M N = M ′N : σ0{N/x} by TMEqΠ

Case:
N −→ N ′

M N −→M N ′

39

Ψ `M : Πx:τ0.σ0, Ψ ` τ0 :: type, Ψ ` N : τ0 and Ψ `M N : σ0{N/x}
by inversion lemma

Ψ ` N = N ′ : τ0 by i.h.
Ψ `M = M : Πx:τ0.σ0 by reflexivity
Ψ `M N = M N ′ : σ0{N/x} by TMEqΠ

(λx:τ0.M0)N0 −→M0{N0/x}

Ψ ` λx:τ0.M0 : Πx:τ0.σ0, Ψ ` τ0 :: type, Ψ ` N0 : τ0,
Ψ ` (λx:τ0.M0)N0 : σ0{N0/x} by inversion lemma
Ψ, x:τ0 `M0 : σ0 by inversion lemma
Ψ ` (λx:τ0.M0)N0 = M0{N0/x} : σ0{N/x} by TMEqβ

Theorem 2.5 (Subject Reduction – Terms). If Ψ ` M : τ and M −→ M ′

then Ψ `M ′ : τ

Proof. Immediate from Theorem B.14 and validity for equality.

Theorem 2.6 (Subject Reduction – Processes). If Ψ ;Γ ;∆ ` P :: z:A and
P −→ P ′ then ∃Q such that P ′ ≡ Q and Ψ ;Γ ;∆ ` Q :: z:A

Proof. The proof follows by Theorem B.14 and a series of lemmas that relate
typed processes and their reducts under a cut (which now crucially rely on the
inversion lemmas and validity). See [29,28,5].

Theorem 2.7 (Progress – Terms). If Ψ `M : τ then either M is a value or
M −→M ′

Proof. By induction on typing, using the standard canonical forms-based rea-
soning and noting that monadic terms are values.

C Appendix – Embedding

Lemma C.1 (Compositionality).

1. Ψ ` JK{M/x}K iff Ψ ` JKK{{JMKc}/x}
2. Ψ ` JK1{τ/t}K iff Ψ ` JK1K{JτK/t}
3. Ψ ` JK1{A/x}K iff Ψ ` JK1K{JAK/x}
4. Ψ ` Jτ{M/x}K :: JK{M/x}K iff Ψ ` JτK{{JMKc}/x} :: JKK{{JMKc}/x}
5. Ψ ` JA{M/x}K :: JK{M/x}K iff Ψ ` JAK{{JMKc}/x} :: JKK{{JMKc}/x}
6. Ψ ;Γ ;∆ ` JM{N/x}Kz = JMKz{{JNKy}/x} :: z:JA{N/x}K
7. Ψ ;Γ ;∆ ` JP{M/x}K :: z:JA{M/x}K iff Ψ ;Γ ;∆ ` JP K{{JMKc}/x} :: z:JAK{{JMKc}/x}

Proof. By mutual induction on the structure of the given kind/type/session
type/etc.

Case: K = type or K = stype

40

Trivial.

(1)
Case: K = Πy:τ.K ′

Subcase: ⇒
JΠy:τ.K ′{M/x}K = JΠy:τ{M/x}.K ′{M/x}K = Πy:{Jτ{M/x}K}.JK ′{M/x}K by definition
Πy:{JτK{{JMKc}/x}}.JK ′K{{JMKc}/x} by i.h.(3) and i.h.(1)
= (Πy:{JτK}.JK ′K){{JMKc}/x} by definition, satisfying ⇒
Subcase: ⇐
JΠy:τ.K ′K{{JMKc}/x} = (Πy:{JτK}.JK ′K){{JMKc}/x} =
Πy:{JτK}{{JMKc}/x}.JK ′K{{JMKc}/x} by definition
Πy:{Jτ{M/x}K}.JK ′{M/x}K by i.h.(3) and i.h.(1)
= JΠy:τ.K ′{M/x}K by definition, satisfying ⇐

Case: K = Πt:K1.K2

Same argument as above, appealing to i.h.(1)

(2)
As above, appealing to i.h.(2)
(3)
As above, appealing to i.h.(3)
(4)

Case: τ = Πy:τ ′.σ

Subcase: ⇒
JΠy:τ ′.σ{M/x}K = JΠy:τ ′{M/x}.σ{M/x}K = ∀y:{Jτ ′{M/x}K}.Jσ{M/x}K by definition
∀y:{Jτ ′K{{JMKc}/x}}.JσK{{JMKc}/x} by i.h.(3)
= (∀y:{Jτ ′K}.JσK){{JMKc}/x} by definition, satisfying ⇒
Subcase: ⇐
JΠy:τ ′.σK{{JMKc}/x} = (∀y:{Jτ ′K}.JσK){{JMKc}/x} = ∀y:{Jτ ′K{{JMKc}/x}}.JσK{{JMKc}/x}

by definition
∀y:{Jτ ′{M/x}K}.Jσ{M/x}K by i.h.(3)
= JΠy:(τ ′{M/x}).(σ{M/x})K = JΠy:τ ′.σ{M/x}K by definition, satisfying ⇐

Case: τ = λy:τ ′.σ

As above.

Case: τ = τ ′M ′

Jτ ′M ′{M/x}K = Jτ ′{M/x}M ′{M/x}K = Jτ ′{M/x}K {JM ′{M/x}Kc} by definition
Jτ ′K{{JMKd}/x} {JM ′Kc{{JMKd}/x}} by i.h.
Jτ ′M ′K{{JMKd}/x} = (Jτ ′K {JM ′Kc}){{JMKd}/x} = Jτ ′K{{JMKd}/x} {JM ′Kc{{JMKd}/x}}

by definition

Case: τ = λy :: K.τ ′

41

Jλy :: K.τ ′{M/x}K = λy :: L{M/x}.τ ′{M/x}K = λy :: JK{M/x}K.Jτ ′{M/x}K by definition
Jλy :: K.τ ′K{{M}c/x} = λy :: JKK{{M}c/x}.Jτ ′K{{M}c/x} by definition
= λy :: JK{M/x}K.Jτ ′{M/x}K by i.h.

Case: τ = τ ′ σ

Straightforward by i.h. as above.

(5)

Case: A = 1

Trivial.

Case: A = A1 (A2

JA1 (A2{M/x}K = JA1{M/x}K (JA2{M/x}K by definition
JA1K{{JMKc}/x}(JA2K{{JMKc}/x} by i.h.
JA1 (A2K{{JMKc}/x} = JA1K{{JMKc}/x}(JA2K{{JMKc}/x} by definition

Case: A = A1 ⊗A2

Identical to (case.

Case: A = N{li:Ai}
See above.

Case: A = ⊕{li:Ai}
See above.

Case: A = ∀x:τ.A0

J∀x:τ.A0{M/x}K = ∀x:{Jτ{M/x}K}.JA0{M/x}K by definition
∀x:{JτK{{JMKc}/x}}.JA0K{{JMKc}/x} by i.h.
J∀x:τ.A0K{{JMKc}/x} = ∀x:{JτK}.JA0K{{JMKc}/x} =
∀x:{JτK{{JMKc}/x}}.JA0K{{JMKc}/x} by definition

Case: A = ∃x:τ.A0

As above.

Case: A = λx:τ.A0

As above.

Case: A = A0M
′

JA0M
′{M/x}K = JA0{M/x}K {JM ′{M/x}Kc} by definition

(JA0K{{JMKc}/x}) {JM ′Kd{{JMKc}/x}} by i.h.
JA0M

′K{{JMKc}/x} = (JA0K {JM ′Kd}){{JMKc}/x}
= (JA0K{{JMKc}/x}) {JM ′Kd{{JMKc}/x}} by definition

Case: A = A0A1

Straightforward by i.h.

Case: A = λt :: K.A0

Straightforward by i.h.

(6) Ψ ;Γ ;∆ ` JM{N/x}Kz = JMKz{{JNKy}/x} :: z:JA{N/x}K
Case: M = λy:τ.M0

42

Jλy:τ.M0{N/x}Kz :: z:JΠy:τ.σ{N/x}K
Jλy:τ.M0{N/x}Kz = Jλy:τ{N/x}.M0{N/x}Kz = z(y).JM0{N/x}Kz :: z:∀y:{Jτ{N/x}K}.Jσ{N/x}K

by definition
z(y).JM0{N/x}Kz = z(y).JM0Kz{{JNKc}/x} :: z:∀y:{JτK{{JNKc}/x}}.JσK{{JNKc}/x} by i.h.
Jλy:τ.M0Kz{{JNKc}/x} = z(y).JM0Kz{{JNKc}/x} by definition

Case: M = M1M2

JM1M2{N/x}Kz :: z:J(σ{M2/y}){N/x}K
= (νy)(JM1{N/x}Ky | y〈{JM2{N/x}Ky}〉.[y ↔ z]) by definition
= (νy)(JM1Ky{{JNKc}/x} | y〈{JM2Ky{{JNKc}/x}}〉.[y ↔ z]) by i.h.
JM1M2Kz{{JNKc}/x} = (νy)(JM1Ky | y〈{JM2Ky}〉.[y ↔ z]){{JNKc}/x}
= (νy)(JM1Ky{{JNKc}/x} | y〈{JM2Ky{{JNKc}/x}}〉.[y ↔ z]) by definition

Case: M = {z ← P ← uj ; di}

JM{N/x}Kz = z(u0).z(uj).z(d0).z(dn).JP{N/x}K by definition
z(u0).z(uj).z(d0).z(dn).JP K{{JNKc}/x} by i.h.
JMKz{{JNKc}/x} = z(u0).z(uj).z(d0).z(dn).JP K{{JNKc}/x} by definition

Case: M = y with y 6= x

Jy{N/x}Kz = w ← y; [w ↔ z] by definition
JyKz{{JNKc}/x} = w ← y; [w ↔ z] by definition

Case: M = y with y = x

Jx{N/x}Kz = JNKz by definition
JxKz{{JNKc}/x} = w ← {JNKc}; [w ↔ z] by definition
w ← {JNKc}; [w ↔ z] −→+ JNKz by reduction semantics
w ← {JNKc}; [w ↔ z] = JNKz by PEqRed

(7) Ψ ;Γ ;∆ ` JP{M/x}K :: z:JA{M/x}K iff Ψ ;Γ ;∆ ` JP K{{JMKc}/x} ::
z:JAK{{JMKc}/x}

Case: P = (νy)(P1 | P2)

J(νy)(P1 | P2){M/x}K = (νy)(JP1{M/x}K | JP2{M/x}K) by definition
(νy)(JP1K{{JMKc}/x} | JP2K{{JMKc}/x}) by i.h.
J(νy)(P1 | P2)K{{JMKc}/x} = (νy)(JP1K{{JMKc}/x} | JP2K{{JMKc}/x}) by definition

Case: P = z〈M0〉.P0 by ∃R

Jz〈M0〉.P0{M/x}K = z〈{JM0{M/x}Kd}〉.JP0{M/x}K by definition
z〈{JM0Kd{{JMKc}/x}}〉.JP0K{{JMKc}/x} by i.h.
Jz〈M0〉.P0K{{JMKc}/x} = z〈{JM0Kd{{JMKc}/x}}〉.JP0K{{JMKc}/x} by definition

Case: P = x←M0 ← uj ; yi;P0

43

JP{M/x}K = (νc)(JM0{M/x}Kc | c〈v1〉.(u1〈a1〉.[a1 ↔ v1] | · · · |
c〈d1〉.([y1 ↔ d1] | · · · | c〈dn〉.([yn ↔ dn] | JP0{M/x}K) . . .) by definition
(νc)(JM0Kc{{JMKc}/x} | c〈v1〉.(u1〈a1〉.[a1 ↔ v1] | · · · |
c〈d1〉.([y1 ↔ d1] | · · · | c〈dn〉.([yn ↔ dn] | JP0K{{JMKc}/x}) . . .) by i.h.
= JP K{{JMKc}/x} by definition

Remaining process cases are straightforward by i.h.

Lemma C.2 (Compositionality – Reflection in Equality).

1. Ψ ` JK{M/x}K = JKK{{JMKc}/x}
2. Ψ ` JK1{τ/t}K = JK1K{JτK/t}
3. Ψ ` JK1{A/x}K = JK1K{JAK/x}
4. Ψ ` Jτ{M/x}K = JτK{{JMKc}/x} :: JK{M/x}K
5. Ψ ` JA{M/x}K = JAK{{JMKc}/x} :: JK{M/x}K
6. Ψ ;Γ ;∆ ` JM{N/x}Kz = JMKz{{JNKy}/x} :: z:JA{N/x}K
7. Ψ ;Γ ;∆ ` JP{M/x}K = JP K{{JMKc}/x} :: z:JA{M/x}K

Proof. (1-3) is identical to corresponding statements in Lemma C.1.
(4) Ψ ` Jτ{M/x}K = JτK{{JMKc}/x} :: JK{M/x}K

Case: τ = Πy:τ ′.σ

JΠy:τ ′.σ{M/x}K = JΠy:τ ′{M/x}.σ{M/x}K = ∀y:{Jτ ′{M/x}K}.Jσ{M/x}K by definition
JΠy:τ ′.σK{{JMKc}/x} = (∀y:{Jτ ′K}.JσK){{JMKc}/x} = ∀y:{Jτ ′K{{JMKc}/x}}.JσK{{JMKc}/x}

by definition
Ψ ` {Jτ ′{M/x}K} = {Jτ ′K{{JMKc}/x}} :: type by i.h. and TEq{}
Ψ, y:{Jτ ′{M/x}K} ` Jσ{M/x}K = JσK{{JMKc}/x} :: stype by i.h.
Ψ ` ∀y:{Jτ ′{M/x}K}.Jσ{M/x}K = ∀y:{Jτ ′K{{JMKc}/x}}.JσK{{JMKc}/x} :: stype by STEq∀

Case: τ = λy:τ ′.σ

Jλy:τ ′.σ{M/x}K = λy:{Jτ ′{M/x}K}.Jσ{M/x}K by definition
Jλy:τ ′.σK{{JMKc}/x} = λy:{Jτ ′K}{{JMKc}/x}}.JσK{{JMKc}/x} by definition
Ψ ` {Jτ ′{M/x}K} = {Jτ ′K}{{JMKc}/x}} :: type by i.h. and TEq{}
Ψ, y:{Jτ ′{M/x}K} ` Jσ{M/x}K = JσK{{JMKc}/x} :: JK{M/x}K by i.h.
Ψ ` λy:{Jτ ′{M/x}K}.Jσ{M/x}K = λy:{Jτ ′K}{{JMKc}/x}}.JσK{{JMKc}/x} :: Πx:{Jτ ′{M/x}K}.JK{M/x}K

by STEqλ

Case: τ = τ ′M ′

Jτ ′M ′{M/x}K = Jτ ′{M/x}K {JM ′{M/x}Kd} by definition
Jτ ′M ′K{{JMKc}/x} = (Jτ ′K{{JMKc}/x}) {JM ′Kd{{JMKc}/x}} by definition
Ψ ` Jτ ′{M/x}K = Jτ ′K{{JMKc}/x} :: Πy:{Jτ ′′{M/x}K}.JK{M/x}K by i.h
Ψ ` {JM ′{M/x}Kd} = {JM ′Kd{{JMKc}/x}} : {Jτ ′′{M/x}K} by i.h. and TEq{}
Ψ ` Jτ ′{M/x}K {JM ′{M/x}Kd} =

(Jτ ′K{{JMKc}/x}) {JM ′Kd{{JMKc}/x}} :: JK{M/x}K{{JM ′{M/x}Kd}/y} by STEqApp

Case: τ = λt :: K ′.τ ′

44

Jλt :: K ′.τ ′{M/x}K = λt :: JK ′{M/x}K.Jτ ′{M/x}K by definition
Jλt :: K ′.τ ′K{{JMKc}/x} = λt :: JK ′K{{JMKc}/x}.Jτ ′K{{JMKc}/x} by definition
Ψ ` JK ′{M/x}K = JK ′K{{JMKc}/x} by i.h.
Ψ, t :: JK ′{M/x}K ` Jτ ′{M/x}K = Jτ ′K{{JMKc}/x} :: JK ′′{M/x}K by i.h.
Ψ ` λt :: JK ′{M/x}K.Jτ ′{M/x}K =

λt :: JK ′K{{JMKc}/x}.Jτ ′K{{JMKc}/x} :: Πt :: JK ′{M/x}K.JK ′′{M/x}K by STEqTλ

Case: τ = τ ′ σ

Jτ ′ σ{M/x}K = Jτ ′{M/x}K Jσ{M/x}K by definition
Jτ ′ σK{{JMKc}/x} = Jτ ′K{{JMKc}/x} JσK{{JMKc}/x} by definition
Ψ ` Jτ ′{M/x}K = Jτ ′K{{JMKc}/x} :: Πt : JK{M/x}K.JK ′{M/x}K by i.h.
Ψ ` Jσ{M/x}K = JσK{{JMKc}/x} :: JK{M/x}K by i.h.

Remaining cases are identical.

Lemma C.3 (Preservation of Equality).

1. If Ψ ` K1 = K2 then {JΨK} ` JK1K = JK2K
2. If Ψ ` τ1 = τ2 :: K then {JΨK} ` Jτ1K = Jτ2K :: JKK
3. If Ψ ` A = B :: K then {JΨK} ` JAK = JBK :: JKK
4. If Ψ `M = N : τ then {JΨK}; ·; · ` JMKz = JNKz :: z:JτK
5. If Ψ ;Γ ;∆ ` P = Q :: z:A then {JΨK}; JΓ K; J∆K ` JP K = JQK :: z:JAK

Proof. By induction on the given judgment.

Case: KEqR, KEqS, KEqT and KEqΠ2

Immediate by i.h.
Case: KEqΠ1

Ψ ` τ = σ :: type and Ψ, x:τ ` K1 = K2 by inversion
{JΨK} ` JτK = JσK :: stype by i.h.
{JΨK} ` {JτK} = {JσK} :: type by TEq{} {JΨK}, x:{JτK} ` JK1K = JK2K by i.h.
{JΨK} ` Πx:{JτK}.JK1K = Πx:{JσK}.JK2K by KEqΠ1

(2)
Case: TEqR, TEqT, TEqS

Immediate by i.h.
Case: TEqΠ

Ψ ` τ = τ ′ :: type and Ψ, x:τ ` σ = σ′ :: type by inversion
{JΨK} ` JτK = Jτ ′K :: stype by i.h. {JΨK} ` {JτK} = {Jτ ′K} :: type by TEq{}
{JΨK}, x:{JτK} ` JσK = Jσ′K :: stype by i.h.
{JΨK} ` ∀x:{JτK}.JσK = ∀x:{Jτ ′K}.Jσ′K :: stype by STEq∀

Case: TEqλ

45

Ψ ` τ = τ ′ :: type and Ψ, x:τ ` σ = σ′ :: K by inversion
{JΨK} ` JτK = Jτ ′K :: stype by i.h.
{JΨK} ` {JτK} = {Jτ ′K} :: type by TEq{}
{JΨK}, x:{JτK} ` JσK = Jσ′K :: JKK by i.h.
{JΨK} ` λx:{JτK}.JσK = λx:{Jτ ′K}.Jσ′K :: Πx:{JτK}.JKK by STEqλ

Case: TEqTλ

Ψ ` K = K ′ and Ψ, t :: K ` τ = σ :: K ′′ by inversion
{JΨK} ` JKK = JK ′K by i.h.
{JΨK}, t :: JKK ` JτK = JσK :: JK ′′K by i.h.
{JΨK} ` λt :: JKK.JτK = λt :: JK ′K.JσK :: Πt :: JKK.JK ′′K by STEqTλ

Case: TEqApp

Ψ ` τ = σ :: Πx:τ ′.K and Ψ `M = N : τ ′ by inversion
{JΨK} ` JτK = JσK :: Πx:{Jτ ′K}.JKK by i.h.
{JΨK}; ·; · ` JMKz = JNKz :: z:Jτ ′K by i.h.
{JΨK} ` {JMKz} = {JNKz} : {Jτ ′K} by TEq{}
{JΨK} ` JτK {JMKz} = JσK {JNKz} :: JKK{{JMKz}/x} by STEqApp
{JΨK} ` JτK {JMKz} = JσK {JNKz} :: JK{M/x}K by compositionality and conversion

Case: TEqTApp

Ψ ` τ = τ ′ :: Πt :: K1.K2 and Ψ ` σ = σ′ :: K1 by inversion
{JΨK} ` JτK = Jτ ′K :: Πt :: JK1K.JK2K by i.h.
{JΨK} ` JσK = Jσ′K :: JK1K by i.h.
{JΨK} ` JτK JσK = Jτ ′K Jσ′K :: JK2K{JσK/t} by STEqTApp
{JΨK} ` JτK JσK = Jτ ′K Jσ′K :: JK2{σ/t}K by compositionality and conversion

Case: TEqβ

Ψ, x:τ ` σ :: K and Ψ `M : τ by inversion
{JΨK}, x:{JτK} ` JσK :: JKK by type preservation of the encoding
{JΨK}; ·; · ` JMKc :: c:JτK by type preservation of the encoding
{JΨK} ` {JMKc} : {JτK} by {}I
{JΨK} ` (λx:{JτK}.JσK) {JMKc} = JσK{{JMKc}/x} :: JKK{{JMKc}/x} by STEqβ
{JΨK} ` (λx:{JτK}.JσK) {JMKc} = Jσ{M/x}K :: JK{M/x}K

by compositionality and conversion

Case: TEqTβ

Ψ ` σ :: K and Ψ, t :: K ` τ :: K ′ by inversion
{JΨK} ` JσK :: JKK by type preservation of the encoding
{JΨK}, t :: JKK ` JτK :: JK ′K by type preservation of the encoding
{JΨK} ` (λt :: JKK.JτK) JσK = JτK{JσK/t} :: JK ′K{JσK/t} by STEqTβ
{JΨK} ` (λt :: JKK.JτK) JσK = Jτ{σ/t}K :: JK ′{σ/t}K by compositionality and conversion

46

Case: TEqη

Ψ ` σ :: Πx:τ.K and x 6∈ fv(σ) by inversion
{JΨK} ` JσK :: Πx:{JτK}.JKK by type preservation of the encoding
{JΨK} ` λx:{JτK}.JσKx = JσK :: Πx:{JτK}.JKK by STEqη
{JΨK} ` λx:{JτK}.JσK {c← (y ← x; [y ↔ c])} = JσK :: Πx:{JτK}.JKK

by STEqT, STEqApp and TMEq{}η

Case: TEqTη

Ψ ` τ :: Πt :: K1.K2 and t 6∈ fv(τ) by inversion
{JΨK} ` JτK :: Πt :: JK1K.JK2K by type preservation of the encoding
{JΨK} ` λt :: JKK.JτK t = JτK :: Πt :: JKK.JK ′K by STEqTη

Case: TEq{}

∀i, j.Ψ ` Ai = Bi :: stype, Ψ ` Cj = Dj :: stype and Ψ ` A = B :: stype by inversion
{JΨK} ` JCjK = JDjK :: stype by i.h.
{JΨK} ` JAiK = JBiK :: stype by i.h.
{JΨK} ` JAK = JBK :: stype by i.h.

{JΨK} ` !JCjK (JAiK (JAK = !JDjK (JBiK (JBK :: stype by STEq (and STEq!

(3)
All cases are identical to those of (2).
(4)

Case: TMEqR

Ψ `M : τ by inversion
{JΨK}; ·; · ` JMKz :: z:JτK by type preservation of the encoding
{JΨK}; ·; · ` JMKz = JMKz :: z:JτK by PEqR

Case: TMEqS TMEqT
Immediate by i.h. and the corresponding definitional equality rules for pro-
cesses.

Case: TMEqλ

Ψ ` λx:τ.M : Πx:τ.σ, Ψ ` λx:τ ′.N : Πx:τ ′.σ′, Ψ ` Πx:τ.σ = Πx:τ ′.σ′ :: type
and Ψ, x:τ `M = N : σ by inversion
{JΨK}, x:{JτK}; ·; · ` JMKz = JNKz :: z:JσK by i.h.
{JΨK} ` ∀x:{JτK}.JσK = ∀x:{Jτ ′K}.Jσ′K :: stype by i.h.
{JΨK} ` z(x).JMKz = z(x′).JNKz :: z:∀x:{JτK}.JσK by PEq∀R

Case: TMEqApp

Ψ `M = M ′ : Πx:τ.σ and Ψ ` N = N ′ : τ by inversion
{JΨK}; ·; · ` JMKx = JM ′Kx :: x:∀x:{JτK}.JσK by i.h.
{JΨK}; ·; · ` JNKy = JN ′Ky :: y:JτK by i.h.
{JΨK} ` {JNKy} = {JN ′Ky} : {JτK} by TMEq{}

47

{JΨK}; ·; · ` (νx)(JMKx | x〈{JNKy}〉.[x↔ z]) =
(νx)(JM ′Kx | x〈{JN ′Ky}〉.[x↔ z]) :: z:JσK{{JNKy}/x} by PEqcut, PEq∀L, PEqID

{JΨK}; ·; · ` (νx)(JMKx | x〈{JNKy}〉.[x↔ z]) =
(νx)(JM ′Kx | x〈{JN ′Ky}〉.[x↔ z]) :: z:Jσ{N/x}K by compositionality and conversion

Case: TMEqβ

Ψ ` λx:τ.M : Πx:τ.σ and Ψ ` N : τ by inversion
{JΨK}; ·; · ` y(x).JMKy :: y:∀x:{JτK}.JσK by type preservation of the encoding
{JΨK}; ·; · ` JNKw :: w:JτK by type preservation of the encoding
{JΨK} ` {JNKw} : {JτK} by {}I
To show: {JΨK}; ·; · ` J(λx:τ.M)NKz = JM{N/x}Kz :: z:Jσ{N/x}K
S.T.S: {JΨK}; ·; · ` (νy)(y(x).JMKy | y〈{JNKw}〉.[y ↔ z]) = JM{N/x}Kz :: z:Jσ{N/x}K

{JΨK}; ·; · ` (νy)(y(x).JMKy | y〈{JNKw}〉.[y ↔ z]) :: z:JσK{{JNKw}/x}
by above, id,∀L and cut

−→−→ JMKz{{JNKw}/x} by operational semantics
{JΨK}; ·; · ` JMKz{{JNKw}/x} :: z:JσK{{JNKw}/x} by type preservation
{JΨK}; ·; · ` (νy)(y(x).JMKy | y〈{JNKw}〉.[y ↔ z]) = JM{N/x}Kz :: z:Jσ{N/x}K

by above, PEqRed, compositionality and conversion

Case: TMEqη

Ψ `M : Πx:τ.σ and x 6∈ fv(M) by inversion
{JΨK}; ·; · ` JMKy :: z:∀x:{JτK}.JσK by type preservation of the encoding
{JΨK}; ·; · ` z(x).(νy)(JMKy | y〈x〉.[y ↔ z]) =

z(x).(νy)(JMKy | y〈{c← (y ← x; [y ↔ c])← ·}〉.[y ↔ z]) :: z:∀x:{JτK}.JσK
by PEqCut, PEq∀L, PEqID, TMEq{}η and PEqR

To show: {JΨK}; ·; · ` z(x).(νy)(JMKy | y〈{c← (y ← x; [y ↔ c])← ·}〉.[y ↔ z]) =
JMKz :: z:∀x:{JτK}.JσK

{JΨK}; ·; · ` z(x).(νy)(JMKy | y〈x〉.[y ↔ z]) = (νy)(JMKy | z(x).y〈x〉.[y ↔ z]) :: z:∀x:{JτK}.JσK
by PEqCC∀

{JΨK}; ·; · ` (νy)(JMKy | z(x).y〈x〉.[y ↔ z]) = (νy)(JMKy | [y ↔ z]) :: z:∀x:{JτK}.JσK
by PEq∀η

(νy)(JMKy | [y ↔ z]) −→ JMKz by the operational semantics
{JΨK}; ·; · ` JMKz :: z:∀x:{JτK}.JσK by type preservation
{JΨK}; ·; · ` (νy)(JMKy | [y ↔ z]) = JMKz :: z:∀x:{JτK}.JσK by PEqRed
{JΨK}; ·; · ` z(x).(νy)(JMKy | y〈{c← (y ← x; [y ↔ c])← ·}〉.[y ↔ z]) = JMKz :: z:∀x:{JτK}.JσK

by the above reasoning and PEqT

Case: TMEq{}

Ψ ;uj :Bj ; di:Ai ` P = Q :: c:A by inversion

{JΨK};uj :JBjK; di:JAiK ` JP K = JQK :: c:JAK by i.h.
{JΨK}; ·; · ` c(u0). . . . c(uj).c(d0). . . . c(dn).JP K =

c(u0). . . . c(uj).c(d0). . . . c(dn).JQK :: c:!JBjK (JAiK (JAK by PEq(R, PEq!L

48

Case: TMEq{}η

Ψ `M : {uj :Bj ; di:Ai ` c:A} by inversion

{JΨK}; ·; · ` JMKz :: !JBjK (JAiK (JAK
To show: {JΨK}; ·; · ` c(u0). . . . c(uj).c(d0). . . . c(dn).Jz ←M ;uj ; di; [z ↔ c]K

= JMKc :: c:!JBjK (JAiK (JAK
S.T.S: {JΨK}; ·; · ` c(u0). . . . c(uj).c(d0). . . . c(dn).(νz)(JMKz |

z〈v1〉.(u1〈a1〉.[a1 ↔ v1] | · · · | z〈d1〉.([y1 ↔ d1] | · · · | z〈dn〉.([yn ↔ dn] | [z ↔ c]) . . .)

= JMKc :: c:!JBjK (JAiK (JAK
by PEqCC (and PEqCC! and PEq (η and PEq!η, PEqR and PEqRed

Case: PEqR

Ψ ;Γ ;∆ ` P :: z:A by inversion
{JΨK}; JΓ K; J∆K ` JP K :: z:JAK by type preservation of the encoding
{JΨK}; JΓ K; J∆K ` JP K = JP K :: z:JAK by PEqR

Case: PEqS and PEqT
Straightforward by i.h.

Case: PEqRed

Ψ ;Γ ;∆ ` P :: z:A, P −→∗ Q and Ψ ;Γ ;∆ ` Q :: z:A by inversion
{JΨK}; JΓ K; J∆K ` JP K :: z:JAK by type preservation of the encoding
{JΨK}; JΓ K; J∆K ` JQK :: z:JAK by type preservation of the encoding
JP K −→∗ JQK by operational correspondence
{JΨK}; JΓ K; J∆K ` JP K = JQK :: z:JAK by PEqRed

Case: PEq{}E

Ψ `M = N : {uj :Bj ; di:Ai ` c:A}, Ψ ;Γ ;∆, c:A ` Q = Q′ :: z:C, uj :Bj ⊆ Γ and di:Ai = ∆′

by inversion

{JΨK}; ·; · ` JMKy = JNKy :: y:!JBjK (JAiK (JAK by i.h.
{JΨK}; JΓ K; J∆K, c:JAK ` JQK = JQ′K :: z:JCK by i.h.
We conclude by PEqCut, (repeated) PEq(L, PEq!L and PEqID.

All other process cases follow fairly straightforwardly by i.h.

Lemma C.4 (Preservation of Typing).

1. If Ψ ` then JΨK ` and {JΨK} `.
2. If Ψ ` K then {JΨK} ` JKK
3. If Ψ ` τ :: K then {JΨK} ` JτK :: JKK
4. If Ψ ` A :: K then {JΨK} ` JAK :: JKK
5. If Ψ `M : τ then {JΨK}; ·; · ` JMKz :: z:JτK
6. If Ψ ;Γ ;∆ ` P :: z:A then {JΨK}; JΓ K; J∆K ` JP K :: z:JAK

Proof. By induction on the given judgement. (1) is immediate by induction.

Case: τ = Πx:τ ′.σ

49

Ψ ` τ ′ :: type and Ψ, x:τ ′ ` σ :: type by inversion
{JΨK} ` Jτ ′K :: stype by i.h.
{JΨK}, x:{Jτ ′K} ` JσK :: stype by i.h.
{JΨK} ` ∀x:{Jτ ′K}.JσK :: stype by {} and ∀ rules

Case: τ = {uj :Bj ; di:Bi ` c:A}
Straightforward by induction.

Case: τ = λx:τ ′.σ

Ψ ` τ ′ :: type and Ψ, x:τ ′ ` σ :: type by inversion
{JΨK} ` Jτ ′K :: stype by i.h.
{JΨK}, x:{Jτ ′K} ` JσK :: stype by i.h.
{JΨK} ` λx:{Jτ ′K}.JσK :: stype by {} and λ rules

Case: τ = τ ′M

Ψ ` τ ′ :: Πx:σ.K and Ψ `M : σ by inversion
{JΨK} ` Jτ ′K :: Πx:{JσK}.JKK by i.h.
{JΨK}; ·; · ` JMKc :: c:JσK by i.h.
{JΨK} ` {JMKc} :: c:{JσK} by {}I
{JΨK} ` Jτ ′K {JMKc} :: JKK{{JMKc}/x} by application well-formedness rule
{JΨK} ` Jτ ′K {JMKc} :: JK{M/x}K by compositionality

Case: τ = λt :: K.τ ′

Ψ, t :: K ` τ ′ :: K2 by inversion
{JΨK}, t :: JKK ` Jτ ′K :: JK2K by i.h.
{JΨK} ` λt :: JKK.Jτ ′K :: Πt :: JKK.JK ′K by Tλ well-formedness rule

Case: τ = τ ′ σ

Ψ ` τ ′ :: Πt::K1.K2 and Ψ ` σ :: K1 by inversion
{JΨK} ` Jτ ′K :: Πt::JK1K.JK2K by i.h.
{JΨK} ` JσK :: JK1K by i.h.
{JΨK} ` Jτ ′K JσK :: JK2K{JK1K/t} by Tapp well-formedness rule
{JΨK} ` Jτ ′K JσK :: JK2{K1/t}K by compositionality

Case: τ = τ ′ by conversion rule

Ψ ` τ ′ :: K by inversion
Ψ ` K = K ′ by inversion
{JΨK} ` Jτ ′K :: JKK by i.h.
{JΨK} ` JKK = JK ′K by preservation of equality
{JΨK} ` Jτ ′K :: JK ′K by conversion rule

Case: A = 1
Immediate from the definition.

50

Case: A = !A′

Immediate by i.h and ! well-formedness rule.
Case: A = A1 (A2

Immediate by i.h. and (well-formedness rule.
Case: A = A1 ⊗A2

Immediate by i.h. and ⊗ well-formedness rule.
Case: A = ∀x:τ.A0

Ψ ` τ :: type and Ψ, x:τ ` A0 :: stype by inversion
{JΨK} ` JτK :: stype by i.h.
{JΨK}, x:{JτK} ` JA0K :: stype by i.h.
{JΨK} ` ∀x:{JτK}.JA0K :: stype by ∀ well-formedness rule

Case: A = ∃x:τ.A0

Ψ ` τ :: type and Ψ, x:τ ` A0 :: stype by inversion
{JΨK} ` JτK :: stype by i.h.
{JΨK}, x:{JτK} ` JA0K :: stype by i.h.
{JΨK} ` ∃x:{JτK}.JA0K :: stype by ∃ well-formedness rule

Case: A = N{li:Bi}
Immediate by i.h. and N well-formedness rule.

Case: A = ⊕{li:Bi}
Immediate by i.h. and ⊕ well-formedness rule.

Case: A = λx:τ.A′

Ψ ` τ :: type and Ψ, x:τ ` A′ :: K by inversion
{JΨK} ` JτK :: stype by i.h.
{JΨK}, x:{JτK} ` JA′K :: JKK by i.h.
{JΨK} ` λx:{JτK}.JA′K :: Πx:{JτK}.JKK by Sλ well-formedness rule
{JΨK} ` λx:{JτK}.JA′K :: JΠx:τ.KK by compositionality

Case: A = A0M

Ψ ` A0 :: Πx:τ.K and Ψ `M : τ by inversion
{JΨK} ` JA0K :: Πx:{JτK}.JKK by i.h.
{JΨK}; ·; · ` JMKc :: c:JτK by i.h.
{JΨK} ` {JMKc} : {JτK} by {}
{JΨK} ` JA0K {JMKc} :: JKK{{JMKc}/x} by Sapp well-formedness rule
{JΨK} ` JA0K {JMKc} :: JK{M/x}K by compositionality

Case: A = λt :: K.A′

Ψ, t :: K ` A′ :: K2 and Ψ ` K1 by inversion
{JΨK}, t :: JKK ` JA′K :: JK2K by i.h.
{JΨK} ` JK1K by i.h.
{JΨK} ` λt :: JK1K.JA′K :: Πt :: JK1K.JK2K by SΠ well-formedness rule
{JΨK} ` λt :: JK1K.JA′K :: JΠt :: K1.K2K by compositionality

51

Case: A = A′B

Ψ ` A′ :: Πt :: K1.K2 and Ψ ` B :: K1 by inversion
{JΨK} ` JA′K :: Πt :: JK1K.JK2K by i.h.
{JΨK} ` JBK :: JK1K by i.h.
{JΨK} ` JA′K JBK :: JK2K{JBK/x} by Sapp well-formedness rule
{JΨK} ` JA′K JBK :: JK2{B/x}K by compositionality

Case: A = A′ by conversion rule

Ψ ` A′ :: K and Ψ ` K = K ′ by inversion
{JΨK} ` JA′K :: JKK by i.h.
{JΨK} ` JKK = JK ′K by preservation of equality
{JΨK} ` JA′K :: JK ′K by conversion rule

Case: M = λx:τ.M ′

Ψ, x:τ `M : σ by inversion
{JΨK}, x:{JτK}; ·; · ` JMKz :: z:JσK by i.h.
{JΨK}; ·; · ` z(x).JMKz :: z:∀x:{JτK}.JσK by ∀R

Case: M = M ′N

Ψ `M ′ : Πx:τ.σ and Ψ ` N : τ by inversion
{JΨK}; ·; · ` JM ′Kx :: x:∀x:{JτK}.JσK by i.h.
{JτK}; ·; · ` JNKy :: y:JτK by i.h.
{JτK} ` {JNKy} : {JτK} by {}I
{JΨK}; ·; · ` (νx)(JM ′Kx | x〈{JNKy}〉.[x↔ z]) :: z:JσK{{JNKy}/x} by cut, ∀L and id
{JΨK}; ·; · ` (νx)(JM ′Kx | x〈{JNKy}〉.[x↔ z]) :: z:Jσ{N/x}K by compositionality

Case: M = x

Ψ, x:τ ` x:τ by assumption
{JΨK}, x:{JτK}; ·; · ` y ← x; [y ↔ z] :: z:JτK by {}E and id rules

Case: M = {c← P ← uj ; di}

Ψ ` {c← P ← uj ; di} : {uj :Bj ; di:Ai ` c:A} by assumption

Ψ ;uj :Bj ; di:Ai ` P :: c:A by inversion

{JΨK};uj :JBjK; di:JAiK ` JP K :: c:JAK by i.h.

{JΨK}; ·; · ` z(u0).z(uj).z(d0).z(dn).JP K :: z:!JBjK (JAiK (JAK
by !L, copy and (R (repeated)

Case: M = M ′ by conversion rule

52

Ψ `M ′ : σ by inversion
Ψ ` σ = τ :: type by inversion
{JΨK}; ·; · ` JM ′K :: z:JσK by i.h.
{JΨK} ` JσK = JτK :: stype by preservation of equality
{JΨK}; ·; · ` JM ′K :: z:JτK by conversion rule

Case: P = z〈M〉.P1 by ∃R

Ψ `M : τ and Ψ ;Γ ;∆ ` P1 :: z:A{M/x} by inversion
{JΨK}; ·; · ` JMKy :: y:JτK by i.h.
{JΨK} ` {JMKy} : {JτK} by {}I
{JΨK}; JΓ K; J∆K ` JP1K :: z:JA{M/x}K by i.h.
{JΨK}; JΓ K; J∆K ` JP1K :: z:JAK{{JMKy}/x} by compositionality
{JΨK}; JΓ K; J∆K ` z〈{JMKy}〉.JP1K :: z:∃x:{JτK}.JAK by ∃R

All other process cases follow straightforwardly by i.h. (and compositional-
ity/preservation of equality when needed).

Theorem C.5 (Operational Correspondence – Completeness).

1. Let Ψ ;Γ ;∆ ` P :: z:A. If P −→ P ′ then JP K −→+ Q with {JΨK}; JΓ K; J∆K `
Q = JP ′K :: z:A

2. Let Ψ ` M : τ . If M −→ M ′ then JMKz −→ N with {JΨK}; ·; · ` N = JM ′Kz ::
z:JτK

Proof. By induction on the reduction relation.

Case: (νx)(x〈M〉.P | x(y).Q) −→ (νx)(P | Q{M/y})

J(νx)(x〈M〉.P | x(y).Q)K = (νx)(x〈{JMcK}〉.JP K | x(y).JQK) by definition
−→ (νx)(JP K | JQK{{JMcK}/y}) by operational semantics
J(νx)(P | Q{M/y})K = (νx)(JP K | JQ{M/y}K) by definition
Ψ ;Γ ;∆ ` (νx)(JP K | JQK{{JMcK}/y}) = (νx)(JP K | JQ{M/y}K) :: z:C

by compositionality, type preservation and PEqCut

Case: c←M ← uj ; di;Q −→ c←M ′ ← uj ; di;Q with M −→M ′

Straightforward by i.h.
Case: c← {c← P ← uj ; di} ← uj ; di;Q −→ (νc)(P | Q)

Jc← {c← P ← uj ; di} ← uj ; di;QK −→+ (νc)(JP K | JQK)
by definition and operational semantics

J(νc)(P | Q)K = (νc)(JP K | JQK) by definition
We conclude by PEqR.

Case: (λx:τ.M)N −→M{N/x}

J(λx:τ.M)NKz = (νy)(y(x).JMKy | y〈{JNKc}〉.[y ↔ z]) by definition
−→ (νy)(JMKy{{JNKc}/x} | [y ↔ z]) −→ JMKz{{JNKc}/x} by operational semantics
{JΨK}; ·; · ` JMKz{{JNKc}/x} = JM{N/x}Kz :: z:Jσ{N/x}K

by compositionality and type preservation

53

Case: M N −→M ′N with M −→M ′

JM NKz = (νx)(JMKx | x〈{JNKc}〉.[x↔ z]) by definition
JMKx −→M0 with {JΨK}; ·; · `M0 = JM ′Kz :: z:A by i.h.
(νx)(JMKx | x〈{JNKc}〉.[x↔ z]) −→ (νx)(M0 | x〈{JNKc}〉.[x↔ z])

by the operational semantics
= (νx)(JM ′Kx | x〈{JNKc}〉.[x↔ z]) :: z:A by type preservation, PEqCut and PEqR

	Depending on Session-Typed Processes

