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Abstract—This paper introduces cycle-reconfigurable modules
that enhance FPGA architectures with efficient support for
dynamic data accesses: data accesses with accessed data size and
location known only at runtime. The proposed module adopts
new reconfiguration strategies based on dynamic FIFOs, dynamic
caches, and dynamic shared memories to significantly reduce
configuration generation and routing complexity. We develop
a prototype FPGA chip with the proposed cycle-reconfigurable
module in the SMIC 130-nm technology. The integrated module
takes less than the chip area of 39 CLBs, and reconfigures
thousands of runtime connections in 1.2 ns. Applications for large-
scale sorting, sparse matrix-vector multiplication, and Mem-
cached are developed. The proposed modules enable 1.4 and
11 times reductions in area-delay product compared with those
applications mapped to previous architectures and conventional
FPGAs.

I. INTRODUCTION

While recent progress in FPGAs technology shows good
promise for mainstream hardware accelerators, one major
limitation of FPGAs is the inefficient support for dynamic
operations: operations with execution states only known at
runtime. For applications such as stencil computation [1],
execution state in each clock cycle is known at design time,
and thus the corresponding circuits can be optimized. For
applications with dynamic operations, such as Memcached [2],
sparse matrix [3], and large-scale sorting [4], an operation has
multiple possible execution states every cycle. Designers need
to implement extra resources to support all possible execution
states. For example, in Figure 1(a), the accessed data position
depends on runtime data column[j], and the 32 data-paths read
memory data in parallel. With each memory port connected
to a specific memory region, a single data-path may connect
to any of the memory ports during runtime. Therefore, the 32
data-paths require a crossbar with 1024-to-1024 connections
(we assume the design uses 32-bit data). This medium-scale
example cannot be routed in a Virtex-6 SX475T FPGA, while
recent sparse matrix designs [5] contain 128 parallel data-paths.

The EURECA architecture [6] adapts a new reconfiguration
flow that generates configuration on-chip and reconfigures
connection network cycle by cycle to support all possible
runtime connections with linear area complexity. As shown
in Figure 1(b), a EURECA module is inserted between data-
paths and memory ports. A Configuration Generator (CG),
implemented in user logic, generates configurations based
on runtime variable column[j]. At each cycle, the generated
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Fig. 1: An example application with dynamic data accesses, imple-
mented with (a) conventional FPGAs, and (b) EURECA architecture.

runtime configurations update the connection network based on
the memory port each data-path is accessing. This significantly
reduces the resource usage to support parallel dynamic data
accesses.

The EURECA architecture uses conventional routing fabrics
to connect CG outputs to module configuration input, and
implements CGs with user logic. However, the solution shown
in Figure 1(b) is only required for the most complex runtime
scenarios: the data accesses from parallel data-paths are inde-
pendent from each other, and each address and data port needs
separate configurations. Using the same strategy to support all
applications with dynamic data-paths will bring large overhead
in resource usage and routing, since more configurations
need to be connected and routed to module input. This work
examines the possible reconfiguration scenarios and proposes
novel reconfiguration features for each runtime scenario, to
address the shortcomings of the EURECA architecture. The
contributions include:
• Categorised runtime data access scenarios and novel

runtime reconfiguration strategies for each of the scenarios,
see Section III
• With the new strategies, architecture design space explo-
ration to define optimized cycle-reconfigurable architec-
ture, see Section IV
• With the optimal architecture, circuits and implementa-

tion details for the cycle-reconfigurable modules to support
the new strategies, with a prototype 6.44 mm x 7.8 mm
chip developed in the SMIC 130-nm technology, see
Section V



• Three benchmark applications targeting the prototype
chip, showing large improvements compared with appli-
cations mapped to FPGAs and EURECA architectures,
see Section VI

II. RELATED WORK

Support for communication operations has been explored
in reconfigurable architectures. Coarse-grained architectures
such as Matrix [7], Tilera [8] and Ambric [9] implement
distributed general-purpose processors and dedicated com-
munication networks on-chip. General-purpose processors
can support dynamic data accesses, enabled by local caches
and global communication network. To coordinate multiple
processors, hardware designs executed on these architectures
need new programming models, and often cannot exploit
fine-grained parallelism in applications. For existing FPGA
architectures, previous work proposes memory abstractions
such as CoRAM [10], and optimization tools such as polyhedral
models [11], to improve data access efficiency. However, these
approaches are limited by the underlying hardware architectures,
and cannot efficiently support applications with dynamic data
accesses, such as the motivating example in Section I. In
contrast, this work enhances existing FPGA architectures with
cycle-reconfigurable modules, providing efficient support for
dynamic accesses, and preserving fine-grained parallelism in
existing reconfigurable designs.

Since not all possible connections of dynamic accesses are
active at the same time, reconfigurable designs can use runtime
reconfiguration to only implement the active connections.
In [12], partial reconfiguration is applied to update a wide
crossbar by reusing the routing multiplexers. It takes 220 µs
to reconfigure a crossbar running at 150MHz. As discussed in
the motivating example, dynamic data accesses often require
reconfiguration each clock cycle, the 220 µs reconfiguration
time reduces effective clock frequency to 4.5 KHz. DPGA [13]
and time-multiplexed FPGAs [14] store multiple configuration
sets on-chip to reduce reconfiguration time to reconfigure
circuits within a clock cycle. These architectures replicate
on-chip configuration memories. The 3D programmable archi-
tecture from Tabula [15] replicates the configuration of logic
blocks as well as interconnect. The replicated configuration
memories, however, introduce large area and power overhead.
The EURECA architecture [6] generates configurations on-chip,
demonstrating the potential to efficiently support dynamic data
accesses with small area overhead. However, the experiments
are based on simulation, and on-chip configuration requires
a large amount of user logic and routing fabrics to apply the
generated configuration cycle by cycle. In this work, we propose
new reconfiguration strategies to remove these limitations, and
derive optimized architecture organisation with a prototype
cycle-reconfigurable chip.

III. RECONFIGURATION STRATEGIES

In this section, we categorise data access operations based on
the changes in accessed locations during runtime, and propose

the corresponding reconfiguration strategies for each access
pattern.

A. Data Access Patterns

Data access patterns reflect the regularity of data access
operations. We express a data access operation as a mapping
from loop indices to memory locations. For the example
application in Figure 1, the vector and matrix data access
operations can be expressed as:

loop{i, j}− > accessSetvector{f(j)} (1)
loop{i, j}− > accessSetnonZero{j} (2)

Implemented in hardware, loop indices indicate clock cycles,
and the corresponding data access set contains the accessed data
location in each clock cycle. Within the same data access set,
the distance between two consecutive data access operations
indicates the stride value of this access set. In this work, as
shown in Figure 2, we use the stride value to divide data access
operations into four categories:
• Static: accesses with fixed strides.
• Dynamic size: linear accesses with variable vector size.
• Dynamic offset: vector access with dynamic offsets.
• Random: each access with a dynamic offset.
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Fig. 2: (a) static-access, (b) dynamic-size, (c) dynamic-offset, and (d)
random-access patterns.

Challenge 1: variable vector size. At each clock cycle, the
increase in accessed locations depends on runtime variables.
Figure 2(b) shows an example with dynamic size-patterns.
While data are accessed in streaming manner, due to the non-
deterministic data size, the mapping between memory ports and
data-paths becomes dynamic. During runtime, the challenges
include: (1) Data re-alignment. Runtime connections need to
be adapted to the dynamic mapping between memory ports
and data-paths. For the example in Figure 2(b) and Figure 3(1),
the data mapping changes in the second clock cycle. (2) Data
management. Accessing data with dynamic mapping and non-
deterministic size requires generating proper memory control
signals.

Challenge 2: dynamic offset. The accessed vector data have
an internal stride value of 1, with the starting address changing
randomly. Dynamic pointers typically have dynamic-offset
patterns, as shown in Figure 2(c) and Figure 3(2). Implemented
in hardware, the dynamic data accesses often span multiple
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Fig. 3: A CRM operates as (1) dynamic FIFOs, (2) dynamic caches, and (3) dynamic shared memories, in correspondence to data access
patterns (b), (c), (d) in Figure 2, respectively.

columns. Besides data re-alignment, the challenge to efficiently
support dynamic-offset patterns includes the mapping of input
address data.

Challenge 3: random accesses. In a data access set, each
data access operation depends on different runtime variables.
Therefore, the stride value of the data access set remains
unknown, as shown in Figure 2(d). For the dynamic-size
and dynamic-offset patterns, while runtime reconfiguration
is required to map the dynamic connections, the fixed stride
values ensure the parallel data access operations will not conflict
during runtime. However, for the random-access patterns, there
are possibilities that multiple data access operations point to
the same memory port with different addresses. This leads
to invalid hardware configurations during runtime. Supporting
the random-access patterns requires (1) providing independent
configurations for each access operations, and (2) resolving
runtime data access conflicts.

B. Runtime Reconfiguration Strategies

A Cycle-Reconfigurable Module (CRM) supports the dy-
namic data access scenarios with optimized reconfiguration
strategies. Previously, EURECA architecture relies on user
logic to support all different data access patterns. This increase
the design resource usage. Furthermore, since a large number of
configurations need to be updated during runtime, the routing
overhead to connect EURECA’s CG outputs and configuration
input of CRMs limits design scalability. In this work, we
enhance the CRMs to support a new runtime reconfiguration
strategy for each of the challenges listed above. This enables
applications to efficiently support dynamic data accesses while
minimizing resource usage and routing complexity.

Dynamic FIFOs support dynamic-size patterns. As shown
in Figure 3(1), memory blocks grouped with CRMs are
configured as FIFOs. To address Challenge 1, we add two
features in the CRM. (1) Reconfigurable connections inside the
CRM are pre-aligned such that vector access with fixed stride
value can be supported with the same runtime configuration,
instead of preparing configurations for each memory ports.

(2) Connections for FIFO enable signals are also runtime
reconfigurable, such that variable size of data can be fetched
from FIFOs each clock cycle.

We use the example in Figure 2(b) and 3(1) to demonstrate
the use case of dynamic FIFOs. For the example problem, in
the first cycle, data-paths read (dat[3], dat[4], dat[5]), which
start from the third FIFO memory ports. As the module
internal connections are pre-aligned, the runtime reconfiguration
value 2 is applied to all the reconfigurable connections. The
reconfigured connections resolve the data re-alignment issue
discussed above. In this example, (dat[3], dat[4], dat[5], dat[6])
appear at the CRM output ports, while FIFO outputs are
(dat[5], dat[6], dat[3], dat[4]). The enable signals share the
same reconfiguration. As shown in Figure 3(1), data-paths set
the enable signals to be (1, 1, 1, 0) as three data are read from
FIFOs. The same offset applies to the enable signals since the
read starts from the third memory ports. After reconfiguration,
the enable signals are properly mapped into the FIFOs.

Dynamic caches support dynamic-offset patterns. The
grouped memory blocks are configured as a shared memory
architecture, where each port accesses a certain region in
memory space. For dynamic-offset patterns, both starting
address and accessed data size could vary from cycle to cycle.
As shown in Figure 3(2), the replicated data-paths access
four data starting from dat[6]. The accessed data span the
second and the third columns of the shared memory. To address
Challenge 2, (1) the accessed data can use the same strategy
to be re-aligned. (2) To support more flexible data access,
address inputs need to be connected to the grouped memory
blocks, with each memory port connecting to one address input.
While runtime configurations are calculated as the modulo of
address offset, the address input is calculated as the depth in
each memory region. For example, the address for the first data
dat[6] is 2 (6/4). As shown in Figure 3(2), the CRM pre-aligns
the address connections similar to the data connections, and
share the same configuration at each cycle. Due to the one-cycle
delay between address input and data output, the configuration
is buffered internally to provide one-cycle delay in connection



reconfiguration. In this work, we limit the number of supported
memory ports to be powers of 2, such that the modulo and
division operations can be implemented as shifting operations.

Dynamic shared memories support random-access patterns.
With unknown stride value, each data access operation in a data
access set is independent, and needs to be supported separately.
To be consistent with dynamic FIFOs and dynamic caches, the
shared memories adapt pre-aligned connections. Figure 3(3)
shows the arrangement of data and address connections for a
shared memory. To address Challenge 3, we add two module
features. (1) Inside a CRM, we add control units to enable
configurations to be distributed from the same configuration
input, or updated in parallel from independent configuration
inputs. (2) Enable signals are added for address connection
blocks to prevent data access conflicts, which occur when two or
more data-paths try to access the same memory port. As shown
in Figure 3(3), the first and the forth data-paths try to access
the first memory port within the same cycle, with address 1
and 5 respectively. An access scheduler is implemented in user
logic to decide which address connection will be enabled, and
buffer the address inputs that are not enabled. We do not harden
this scheduler in the CRM so that various scheduling strategies
can be customized based on application requirements.

IV. ARCHITECTURE EXPLORATION

In this section, we explore the design space of a CRM,
including network implementation and memory group size,
where memory group size M defines the number of BRAMs
coupled with a CRM. For the examples in Figure 3, M = 4
and each BRAM has one data output port. In this work, we
use dual-port BRAMs. The explored results are verified with
application performance in the following section.

Connection network in a CRM includes runtime reconfig-
urable connections for data, address, and enable signals. In
hardware, this can be implemented with either multiplexers or
permutation network [16]. While multiplexers enable simple
reconfiguration strategies, permutation network leads to smaller
CRM area. Given a CRM with memory group size M , we
model the impact on CRM area, additional module pins to
input configurations, and CG complexity in Table I.

Multiplexer-based connections have O(M2) area complexity,
since the underlying multiplexers provide all possible connec-
tions in a single step. As a consequence, the runtime connec-
tions are highly regular, and can share runtime configurations
extensively as discussed above. This leads to O(Mlog2M)
complexity for the required additional configuration input pins
and CG logic. In Table I, log28M indicates the maximum
number of configuration bits required to define one runtime
connection.

Permutation network is an all-to-all network with multiple
layers. Each layer only needs to cover parts of possible runtime
connections. Given 8M -to-8M connections, a permutation net-
work requires 2log28M − 1 layers, with each layer containing
4M 2-to-2 selection units. This reduces area complexity to
O(Mlog2M). However, such multi-layer network makes it
difficult to share configurations among the selection units.

In order to generate runtime connections within a clock
cycle, we consider 8M -to-8M connections as logic input, and
configurations to each selection unit as logic output. This
leads to a CG complexity of O(M3). Figure 4 shows CRM
properties as memory group size increases. For a CRM based
on permutation network, its number of configuration pins and
CG area rapidly increase with M .
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Memory group size determines the scale of a CRM and the
number of CRMs on chip, given a number of available BRAMs.
As the memory group size M increases, the CRM can support
higher data access parallelism, at the expense of increasing
CRM area and CG complexity. We define architecture efficiency
Rarc as the product of application area reduction and chip area
overhead.

Rarc =
Static

CRM + CG
· Areaorg
Arearec

(3)

where area reduction Static
CRM+CG refers to the ratio between

area usage of statically implementing dynamic accesses in
user logic and using CRMs, and Areaorg

Arearec
accounts for the chip

area overhead for integrating CRMs. We measure Static with
Verilog designs describing all possible runtime connections,
and calculate CRM as the number of CLBs that consume
the same layout area. The CRM area is calculated based
on measured layout area (discussed in next section) and area
models in Table I. Similarly, CG is calculated with measured
CG resource usage and area models in Table I.

The architecture efficiency, as shown in Figure 5, reaches
a maximum for memory group size 32. While area reduction
for dynamic accesses improves as group size increases, the
area overhead starts to have a large impact on static designs
that do not use CRMs. CRMs based on permutation network
cannot efficiently support dynamic accesses due to the large
CG complexity. Given sufficient on-chip resources, a cycle-
reconfigurable architecture contains multiple CRMs to support
(a) dynamic accesses to different arrays, and (b) dynamic
accesses that require more than 64 memory ports. These
CRMs can be connected to construct larger cycle-reconfigurable
memory architectures.



TABLE I: Modelled CRM properties with memory group size M . CG stands for Configuration Generator.

Topology area1 configuration pins2 CG complexity
runtime connection configuration memory controller

Multiplexer 2(8M · 8 · (8M − 1)) 7(log28M · 2M ) 28(log28M · 2M ) log28M · 2M + 2M 2M · log24M
Permutation 4((2log28M − 1) · 4M ) 7((2log28M − 1) · 4M ) 22((2log28M − 1) · 4M ) (2log28M − 1) · 4M + 2M (8M)3 · (log28M − 1/2)

1 We represent area with transistor count; a 2-to-1 multiplexer, an SRAM cell, and a transistor respectively consume 2, 7 and 22 transistors.
A multiplexer-based CRM needs additional 2-to-1 multiplexers to share configurations.
2 Configuration pins indicate the number of additional pins required to update connections cycle by cycle.
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V. IMPLEMENTATION AND PROTOTYPE

A CRM contains three major components: connection
network, configuration storage, and operation control. Given
the optimal architecture suggested by architecture exploration,
we present implementation details to support new strategies,
describe the prototype chip, and discuss the experience in
implementing the chip layout.
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Fig. 6: Byte-level and word-level connection network organisation.

Connection network integrates pre-aligned byte and word
connections to enable configurations to be better shared. As
shown in Figure 6, a word connection contains 4 byte connec-
tions, and each byte connection contains 8 N -to-1 multiplexers,
where N is the number of bytes in the incoming wires. For
the example CRM with 512 input wires, N = 64. To handle
dynamic accesses with stride value 1, every two consecutive
byte connections have a 1-byte offset, and thus two consecutive
word connections have a 1-word offset. In Figure 6, the input
wires for byte1 are aligned as < 8 : 511, 0 : 7 >. Therefore,

dynamic accesses with fixed stride value can be supported with
the same runtime configuration. For the examples in Figure 3(1)
and (2), memory ports (a, b, c, d) share the same configuration
value 2 to support dynamic data accesses starting from the
second memory port.
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Fig. 7: Array of SRAM cells. sh determines whether a single
configuration is shared in CRM, dyn select SRAM inputs from CGs
or initialisation ports, and WLCG control the write enable signals of
SRAM cells.

Configuration storage and operation mode control enable
CRMs to support different reconfiguration strategies. Figure 7
briefly shows the internal organisations of the SRAM cells and
associated control units. Compared with EURECA [6], our
enhanced design has three features: module-level configuration
sharing, data-address synchronisation, and improved connection
parallelism. (1) With the pre-aligned connection, for dynamic
FIFOs and dynamic caches, the whole CRM can share a single
reconfiguration to re-align data read with non-deterministic
starting addresses. The share selection signal sh determines
whether the configuration inputs for different word connections
are from the same ports or updated in parallel (to support
dynamic shared memories). (2) When grouped memory blocks
are not configured as FIFOs, it takes an extra cycle for
output data to appear at data ports. If configured in the same
cycle as address connections, data connections are updated
before accessed data appear at output ports. Inside a CRM,
configuration input for data connections can be selected from
direct input or registered input. The registered input is used to
cooperate with the 1-cycle delay. We discuss in more detail
in the execution timing part. (3) Given a memory group size
M with 2M 32-bit data ports, a CRM provides up to 8M
different input connections, with each 32-bit port considered
as four 1-byte ports. This provides higher data parallelism for
applications use byte-level data accesses, and enables offset
address to start at any of the 8M ports. Previously, such
parallelism can only be achieved with off-chip data, and a
memory group provides up to 2M connections, with each
BRAM port configured to be 1-byte in width. Furthermore,
with the pre-aligned connections, the improved parallelism



does not require additional configuration inputs.
Execution timing of a cycle-reconfigurable design includes

configuration generation, circuit reconfiguration, and data
processing. Figure 8 shows the timing diagram of a cycle-
reconfigurable design. At the beginning of a clock cycle, CGs
generate circuit configurations based on runtime variables, and
reconfigure the connections in CRMs. Once connections are
updated, for dynamic FIFOs, data appear at the memory ports
are read into data-paths. For dynamic caches and dynamic
shared memories, data-paths first input addresses, and wait for
data appear at memory ports. The data configuration outputs are
registered to align with the additional one cycle delay. BRAMs
connected to a CRMs can be configured to load address at the
rise edge or the fall edge of a clock. In cases that one cycle
delay is required (e.g. the CG inputs depend on loaded data),
we configure BRAMs to load addresses at fall edges, as shown
in Figure 8.

clk

reconfigure

{dat[6], [7],[8],[9]}

address (rise edge)

address (rise edge) {dat[6], [7],[8],[9]}

address (fall edge)

address (fall edge) {6,7,8,9}

CG

{6,7,8,9}

CG

address read

ReconRecon

data available

data available

address read

Fig. 8: Timing diagram of the runtime execution of a cycle-
reconfigurable design.

Prototype architecture. To evaluate the proposed features,
we develop a prototype FPGA integrated with a CRM, in the
SMIC 130-nm technology. Bounded by the tap-out budget,
the prototype chip array size is 17 x 32, with 17 and 32
respectively indicating 17 columns of on-chip resources and
with the height of 32 CLBs. Figure 9 shows the chip layout,
and Table II summarises the chip properties. Given the 32
column height and the BRAM height of 4, the group size is
bounded to be M = 8 with 16 32-bit output ports. With the
supported features and basic circuits integrated, the area usage
of a CRM mainly comes from the horizontal long wires that
connect output ports to connection network. As M increases,
the CRM area is proportional to M2 since both the number
and the length of horizontal wires double as M doubles. This
aligns with the area model in Table I. For M = 8, the module
width is 300 µm. In contrast, the width of a CLB is 250 µm,
and the width of a BRAM is 680 µm. In other words, the CRM
takes the same area as 38.4 CLBs (4.7% of the prototype chip
area). The measured delay for connection reconfiguration is
1.15 ns, which is small compared with the 20 ns to 50 ns chip
clock period. The prototype chip is under the tape-out process,
and the circuit delay properties used in the next section to
calculate critical-path delay are based on simulation results
from Cadence.

VI. CASE STUDIES

Experiment Methodology. We study the benefits of the
proposed architecture with three applications. We prepare
three designs and three corresponding architecture files for
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TABLE II: Cycle-reconfigurable architecture properties.

baseline FPGA CLB: 384 BRAM: 8
DSP: 24 array size: 32x17

architecture area chip width: 6.44 mm chip height: 7.8 mm
CLB width: 250 µm BRAM width: 680 µm

CRM properties width: 300 µm delay: 1.15 ns
group size: 8 additional pins: 82

each application. We present the application performance in
Table III, when mapped into the prototype chip with M = 8.
Static designs (static in Table III), with dynamic connec-
tions statically implemented in user logic, maps to baseline
FPGA architectures. EURECA designs (eureca Table III)
and dynamic designs (dynamic Table III) refer to cycle-
reconfigurable designs based on the EURECA architecture [6]
and the proposed architecture. The synthesis tool uses Design
Compiler (DC) for circuit synthesis, ABC [17] for mapping,
a graph matching algorithm for packing, simulated annealing
algorithm for placement, and path-finder [18] for routing.
Architecture files are modified to recognise a CRM as a hard
block connected to a BRAM column. We map the applications
into the prototype chip. For Memcached, due to its relatively
large application scale, the architecture array size is doubled
to accommodate the design blocks.

Large-Scale Sorting. Sorting large-scale data sets [4] often
uses sorting networks [19], [20] to sort small chunks of
data, and use mergers to combines the sorted small chunks.
Figure 10(a) shows a parallel merger that that merges N data
per iteration from sorted arrays A and B. We assume ascending
order in the sorting algorithm. At each iteration, the algorithm
reads the N smallest data from both arrays, and commit the
N smallest data (in this example, 1, 3 from A and 2, 3 from
B). Therefore, the starting address of read accesses in the next
iteration depends on the number of committed data in the



TABLE III: Benchmark application performance.

Large-scale Sorting Memcached SpMV
static eureca [6] dynamic static eureca [6] dynamic static eureca [6] dynamic

slices (total) 8676 1174 1054 11763 3082 2684 3549 900 876
slices (CG) 0 126 6 0 31 8 0 43 19
DSP 0 0 0 0 0 0 16 16 16
BRAM 16 16 16 8 8 8 8 8 8
CRM 0 1 1 0 1 1 0 1 1
critical-path delay (ns) 25.72 23.87 18.9 60.4 60.0 52.1 15.1 14.9 13.9
area1 8.23x 1.1x 1x 4.38x 1.15x 1x 4.05x 1.03x 1x
CG area1 n/a 21x 1x n/a 3.9x 1x n/a 2.26x 1x
area-delay product 11.2x 1.39x 1x 5.08x 1.32x 1x 4.4x 1.1x 1x
throughput (per cycle) 16 sorted data 64 bytes 16 partial results

1 We compare the resource usage with the number of used CLBs. A CLB contains 4 slices, and a CRM is considered as 38.4
CLBs based on layout area.
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Fig. 10: Cycle-reconfigurable designs for (a) large-scale sorting (dynamic FIFO), (b) Memcached (dynamic cache), and (c) SpMV (dynamic
shared memory).

current iteration, and changes from time to time. In previous
designs [4], N is limited to 1 or 2 due to non-deterministic
starting addresses.

We support dynamic accesses in large-scale sorting with
two CRMs implemented as dynamic FIFOs. As shown in
Figure 10(a), each CRM shares a single configuration for all
enable inputs and data outputs. In each cycle, up to 16 data
can be committed in parallel. In each clock cycle, the CG
takes the number of committed data and the starting address
in the current cycle to calculate the starting address for the
next cycle, and generates runtime configurations based on
the calculated starting address. The proposed reconfiguration
strategy significantly reduces the CG complexity. As shown in
Table III, the CG area is reduced by 21 times. Furthermore,
since fewer configurations need to be routed to a CRM, the
critical path delay is reduced. The dynamic sorting design
achieves 1.39 times improvement compared with the EURECA
design, and 11.2 times improvement compared with the static
design, in terms of area-delay product. In practice, the dynamic
FIFOs can efficiently support streaming database applications,
especially in-memory database applications.

Memcached is a distributed memory caching system widely
used in the servers of web service companies (Facebook,
Twitter, YouTube, Wikipedia, etc.). A Memcached server stores
frequently accessed data in memory to provide quick responses
to web requests. Memcached uses hash tables to index stored

data. Once receiving a new packet, Memcached hashes the key
in the packet, and use the generated hash value to search for
a match in stored data. As shown in Figure 10(b), the search
process iterates through all linked hash entries until a match
is found. In each search, the starting address depends on the
hash value or the fetched next entry address, and the matching
operations check the fetched key value and key length.

We support dynamic accesses in Memcached with a CRM
implemented as a dynamic cache. As shown in Figure 10(b),
a memory group buffers loaded off-chip data. As the search
module loads a hash entry, the CG takes the address of the
linked next hash entry to generate runtime configurations.
Operating as a dynamic cache, the runtime data and address
connections in a CRM all share the same runtime reconfig-
uration. For the prototype chip with M = 8, a Memcached
design can fetch up to 64 bytes of data per clock cycle, and
iterates through the search operations with dynamic pointers
with the efficiency of hardware and the flexibility of memory
management. The dynamic design reduces the application
area-delay product by 1.32 and 5.08 times, compared with
EURECA and static designs. Besides Memcached, applications
that use hash tables can benefit from the proposed architecture.
For example, a Gzip design [21] loads hash table data in
parallel to compress more than one datum per clock cycle,
with dynamic connections between hash tables and parallel
data-paths statically implemented. Applying the dynamic cache



will significantly reduce design area.
Sparse Matrix-Vector Multiplication. Sparse Matrix-

Vector multiplication (SpMV) is widely used in scientific
computing and industrial development. SpMV multiplies a
sparse matrix with a dense vector. In this work, we store
the non-zeros of the sparse matrix in Compressed Sparse
Row (CSR) format. As shown in Figure 10(c), the CSR data
contain three vectors: non-zeros nonZero, position of non-
zeros column, and vector data vector. In the multiplication
process, SpMV multiplies nonZero[j] with corresponding
vector[column[j]]. To avoid the M2 area complexity
discussed in the motivating example, conventional SpMV
architectures [3] replicate vector memories. This limits the
size of vector data can be stored on-chip, and leads to idles
cycles for matrix with low sparsity. In [3], the idle cycles
reduce the average efficiency to 42%.

We support dynamic accesses in SpMV with a CRM
implemented as a dynamic shared memory. As shown in
Figure 10(c), we implement a conflict scheduler to resolve
data accesses that point to the same memory port at the same
clock cycle. The scheduler buffers conflicted data accesses,
and enables the access with pre-defined priority order. Each
data-path has a separate CG to generate configurations for the
address input and data output of a memory port, based on
vector data address column[j]. The access conflict rate,
simulated with 10 sparse matrices from [22], reduces to
15% when M = 32. As N increases, the memory conflict
ratio will further decreases. Inside a CRM, the configurations
for data connections are buffered to align the 1-cycle delay
between address input and data output. For dynamic shared
memory, since configurations cannot be shared, the resource
saving compared with EURECA designs comes from shared
configurations between data and address connections, and
simplified enable signal distribution. As shown in Table III, the
dynamic design reduces area-delay product by 1.1 to 4.4 times,
compared with EURECA and static designs. The dynamic
shared memory can benefit applications with indirect data
accesses, such as graph problems.

VII. DISCUSSION AND CONCLUSION

This work presents the first prototype chip for cycle-
reconfigurable architectures that generate configurations on-
chip with user logic. We propose new runtime reconfiguration
strategies to minimize the logic and the routing complexity to
generate and apply runtime configurations on-chip, and explore
the design space of a cycle-reconfigurable architecture to derive
the optimal architecture organisation. Experimental results show
integrating cycle-reconfigurable module brings small overhead
in chip area (the area of 1.2 columns of CLBs). For applications
with dynamic data accesses, With the prototype chip, the
benchmark applications achieve up to 1.4 and 11.2 times
reduction in application area-delay product, compared with
applications mapped to EURECA architectures and baseline
FPGA architectures respectively. Current and future work
includes developing tools to automatically detect categorised
data access scenarios and generate optimized designs, and

exploring cycle-reconfigurable on-chip network to connect
CRMs.
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